Selective Separation of 4,4’-Methylenedianiline, Isophoronediamine and 2,4-Toluenediamine from Enzymatic Hydrolysis Solutions of Polyurethane

IF 1.8 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Solvent Extraction and Ion Exchange Pub Date : 2023-04-03 DOI:10.1080/07366299.2023.2193229
J. Eberz, M. Doeker, Y. Ackermann, Dominik Schaffeld, N. Wierckx, A. Jupke
{"title":"Selective Separation of 4,4’-Methylenedianiline, Isophoronediamine and 2,4-Toluenediamine from Enzymatic Hydrolysis Solutions of Polyurethane","authors":"J. Eberz, M. Doeker, Y. Ackermann, Dominik Schaffeld, N. Wierckx, A. Jupke","doi":"10.1080/07366299.2023.2193229","DOIUrl":null,"url":null,"abstract":"ABSTRACT The recycling of plastics such as polyurethane (PU) is a current challenge. The continuously increasing production volume and additionally growing end-of-life streams increase the urgency for solutions. Conventional recycling methods such as mechanical and chemical recycling are only economically and/or ecologically suitable to a limited extent. The three-step approach consisting of enzymatic PU decomposition, separation of amines (4,4’-methylenedianiline (MDA), isophoronediamine (IPDA), 2,4-toluenediamine (TDA)) and fermentation of the residual stream is a promising recycling concept. In this study, extraction methods for the separation of MDA and IPDA from an aqueous solution at neutral pH are developed. In addition, the influence of relevant PU hydrolysate components on the amine extraction is investigated. The results show that MDA can be efficiently separated using solvent extraction of 1-octanol. For IPDA separation, a reactive extraction with oleic acid as reactant is developed. The application of these two extraction methods to TDA shows extraction efficiencies of 52% to 86%. The other PU hydrolysate components adipic acid and selected salts have only a minor influence on the extraction efficiency. The diols ethylene glycol and 1,4-butanediol influence the equilibrium pH of IPDA extraction, raising it to higher values. For MDA, no influence of other PU hydrolysate components on the extraction efficiency can be observed. Since amines can have an inhibitory effect on microorganisms, toxicity experiments were carried out to determine the tolerable residual concentration of amines in the raffinate to avoid fermentation inhibition. Growth experiments with Pseudomonas putida KT240 show that MDA has an inhibitory effect at concentrations near the solubility limit, whereas IPDA does not affect growth.","PeriodicalId":22002,"journal":{"name":"Solvent Extraction and Ion Exchange","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solvent Extraction and Ion Exchange","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/07366299.2023.2193229","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The recycling of plastics such as polyurethane (PU) is a current challenge. The continuously increasing production volume and additionally growing end-of-life streams increase the urgency for solutions. Conventional recycling methods such as mechanical and chemical recycling are only economically and/or ecologically suitable to a limited extent. The three-step approach consisting of enzymatic PU decomposition, separation of amines (4,4’-methylenedianiline (MDA), isophoronediamine (IPDA), 2,4-toluenediamine (TDA)) and fermentation of the residual stream is a promising recycling concept. In this study, extraction methods for the separation of MDA and IPDA from an aqueous solution at neutral pH are developed. In addition, the influence of relevant PU hydrolysate components on the amine extraction is investigated. The results show that MDA can be efficiently separated using solvent extraction of 1-octanol. For IPDA separation, a reactive extraction with oleic acid as reactant is developed. The application of these two extraction methods to TDA shows extraction efficiencies of 52% to 86%. The other PU hydrolysate components adipic acid and selected salts have only a minor influence on the extraction efficiency. The diols ethylene glycol and 1,4-butanediol influence the equilibrium pH of IPDA extraction, raising it to higher values. For MDA, no influence of other PU hydrolysate components on the extraction efficiency can be observed. Since amines can have an inhibitory effect on microorganisms, toxicity experiments were carried out to determine the tolerable residual concentration of amines in the raffinate to avoid fermentation inhibition. Growth experiments with Pseudomonas putida KT240 show that MDA has an inhibitory effect at concentrations near the solubility limit, whereas IPDA does not affect growth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚氨酯酶解液中4,4’-亚甲基二苯胺、异佛尔二胺和2,4-甲苯二胺的选择性分离
摘要聚氨酯(PU)等塑料的回收利用是当前面临的挑战。不断增加的生产量和额外增长的报废物流增加了解决方案的紧迫性。传统的回收方法,如机械和化学回收,仅在有限的程度上在经济和/或生态上是合适的。由酶促PU分解、胺(4,4'-亚甲基二苯胺(MDA)、异佛尔二胺(IPDA)、2,4-甲苯二胺(TDA))的分离和残余物流的发酵组成的三步方法是一个很有前途的回收概念。在本研究中,开发了在中性pH下从水溶液中分离MDA和IPDA的提取方法。此外,还考察了PU水解产物的相关组分对胺萃取的影响。结果表明,溶剂萃取1-辛醇可以有效分离丙二醛。对于IPDA分离,开发了以油酸为反应物的反应萃取。这两种提取方法在TDA中的应用表明,提取效率为52%至86%。其他PU水解产物组分己二酸和选定的盐对提取效率只有很小的影响。二醇乙二醇和1,4-丁二醇影响IPDA萃取的平衡pH,使其升高到更高的值。对于MDA,没有观察到其他PU水解产物组分对提取效率的影响。由于胺对微生物有抑制作用,因此进行了毒性实验以确定萃余液中胺的可容忍残留浓度,以避免发酵抑制。恶臭假单胞菌KT240的生长实验表明,MDA在接近溶解度极限的浓度下具有抑制作用,而IPDA不影响生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
5.00%
发文量
15
审稿时长
8.4 months
期刊介绍: Solvent Extraction and Ion Exchange is an international journal that publishes original research papers, reviews, and notes that address all aspects of solvent extraction, ion exchange, and closely related methods involving, for example, liquid membranes, extraction chromatography, supercritical fluids, ionic liquids, microfluidics, and adsorption. We welcome submissions that look at: The underlying principles in solvent extraction and ion exchange; Solvent extraction and ion exchange process development; New materials or reagents, their syntheses and properties; Computational methods of molecular design and simulation; Advances in equipment, fluid dynamics, and engineering; Interfacial phenomena, kinetics, and coalescence; Spectroscopic and diffraction analysis of structure and dynamics; Host-guest chemistry, ion receptors, and molecular recognition.
期刊最新文献
Optimized Lithium(I) Recovery from Geothermal Brine of Germencik, Türkiye, Utilizing an Aminomethyl phosphonic Acid Chelating Resin Efficient Copper Extraction from Industrial Dilute Solutions Using Air-Assisted Solvent Extraction An Advanced Solvent for the Caustic-Side Solvent Extraction of Cesium from Nuclear Waste: Comparing Lipophilic Guanidines for Improved Hydrolytic Stability Enhanced Separation of Americium and Curium in Cyanex301 System by Using Formic Acid and Glycolic Acid as Stripping Chelates Selective Extraction of Yttrium from Zr-Y-Nb-Th-Rich Microgranite Dike Leach Solution Using Cyanex 921
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1