{"title":"Optimization of train formation plan based on technical station under railcar demand fluctuation","authors":"Bing Li, Shangtao Jiang, Yanjie Zhou, H. Xuan","doi":"10.1080/21681015.2023.2221699","DOIUrl":null,"url":null,"abstract":"ABSTRACT Train formation planning (TFP) is essential for rail freight logistics services. The fluctuation of railcar flows dramatically compared with before the outbreak of COVID-19. This paper studies train formation planning, considering three types of train services provided for railcar flow between pairs of technical stations (TS), including direct trains, district trains, and pickup trains. This paper introduces an optimization model with average railcars flow data (OMAD) and an optimization model with dynamic railcars flow data (OMDD) for the train formation planning based on TS under railcar demand fluctuation while minimizing railcar-hour consumption. The OMAD is a deterministic model, and the OMDD is a probability constraint model. To solve the OMDD, an approach for transforming probability constraints into deterministic constraints is presented. Various groups of scenarios are given to verify the effectiveness of the proposed models. Graphical abstract","PeriodicalId":16024,"journal":{"name":"Journal of Industrial and Production Engineering","volume":"40 1","pages":"448 - 463"},"PeriodicalIF":4.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Production Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681015.2023.2221699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Train formation planning (TFP) is essential for rail freight logistics services. The fluctuation of railcar flows dramatically compared with before the outbreak of COVID-19. This paper studies train formation planning, considering three types of train services provided for railcar flow between pairs of technical stations (TS), including direct trains, district trains, and pickup trains. This paper introduces an optimization model with average railcars flow data (OMAD) and an optimization model with dynamic railcars flow data (OMDD) for the train formation planning based on TS under railcar demand fluctuation while minimizing railcar-hour consumption. The OMAD is a deterministic model, and the OMDD is a probability constraint model. To solve the OMDD, an approach for transforming probability constraints into deterministic constraints is presented. Various groups of scenarios are given to verify the effectiveness of the proposed models. Graphical abstract