{"title":"Generalized nash fairness solutions for bi‐objective minimization problems","authors":"Minh Hieu Nguyen, Mourad Baiou, Viet Hung Nguyen, Thi Quynh Trang Vo","doi":"10.1002/net.22182","DOIUrl":null,"url":null,"abstract":"In this article, we consider a particular case of bi‐objective optimization (BOO), called bi‐objective minimization (BOM), where the two objective functions to be minimized take only positive values. As well as for BOO, most of the methods proposed in the literature for solving BOM focus on computing the Pareto‐optimal solutions representing different trade‐offs between two objectives. However, it may be difficult for a central decision‐maker to determine the preferred solutions due to the huge number of solutions in the Pareto set. We propose a novel criterion for selecting the preferred Pareto‐optimal solutions by introducing the concept of ‐Nash Fairness\n(‐) solutions inspired by the definition of proportional fairness. The ‐ solutions are the feasible solutions achieving some proportional nash equilibrium between the two objectives. The positive parameter is introduced to reflect the relative importance of the first objective to the second one. For this work, we will discuss existential and algorithmic questions about the ‐ solutions by first showing their existence for BOM. Furthermore, the ‐ solution set can be a strict subset of the Pareto set. As there are possibly many ‐ solutions, we focus on extreme ‐ solutions achieving the smallest values for one of the objectives. Then, we propose two Newton‐based iterative algorithms for finding extreme ‐ solutions. Finally, we present computational results on some instances of the bi‐objective travelling salesman problem (BOTSP) and the bi‐objective shortest path problem.","PeriodicalId":54734,"journal":{"name":"Networks","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/net.22182","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we consider a particular case of bi‐objective optimization (BOO), called bi‐objective minimization (BOM), where the two objective functions to be minimized take only positive values. As well as for BOO, most of the methods proposed in the literature for solving BOM focus on computing the Pareto‐optimal solutions representing different trade‐offs between two objectives. However, it may be difficult for a central decision‐maker to determine the preferred solutions due to the huge number of solutions in the Pareto set. We propose a novel criterion for selecting the preferred Pareto‐optimal solutions by introducing the concept of ‐Nash Fairness
(‐) solutions inspired by the definition of proportional fairness. The ‐ solutions are the feasible solutions achieving some proportional nash equilibrium between the two objectives. The positive parameter is introduced to reflect the relative importance of the first objective to the second one. For this work, we will discuss existential and algorithmic questions about the ‐ solutions by first showing their existence for BOM. Furthermore, the ‐ solution set can be a strict subset of the Pareto set. As there are possibly many ‐ solutions, we focus on extreme ‐ solutions achieving the smallest values for one of the objectives. Then, we propose two Newton‐based iterative algorithms for finding extreme ‐ solutions. Finally, we present computational results on some instances of the bi‐objective travelling salesman problem (BOTSP) and the bi‐objective shortest path problem.
期刊介绍:
Network problems are pervasive in our modern technological society, as witnessed by our reliance on physical networks that provide power, communication, and transportation. As well, a number of processes can be modeled using logical networks, as in the scheduling of interdependent tasks, the dating of archaeological artifacts, or the compilation of subroutines comprising a large computer program. Networks provide a common framework for posing and studying problems that often have wider applicability than their originating context.
The goal of this journal is to provide a central forum for the distribution of timely information about network problems, their design and mathematical analysis, as well as efficient algorithms for carrying out optimization on networks. The nonstandard modeling of diverse processes using networks and network concepts is also of interest. Consequently, the disciplines that are useful in studying networks are varied, including applied mathematics, operations research, computer science, discrete mathematics, and economics.
Networks publishes material on the analytic modeling of problems using networks, the mathematical analysis of network problems, the design of computationally efficient network algorithms, and innovative case studies of successful network applications. We do not typically publish works that fall in the realm of pure graph theory (without significant algorithmic and modeling contributions) or papers that deal with engineering aspects of network design. Since the audience for this journal is then necessarily broad, articles that impact multiple application areas or that creatively use new or existing methodologies are especially appropriate. We seek to publish original, well-written research papers that make a substantive contribution to the knowledge base. In addition, tutorial and survey articles are welcomed. All manuscripts are carefully refereed.