Generalized nash fairness solutions for bi‐objective minimization problems

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Networks Pub Date : 2023-09-03 DOI:10.1002/net.22182
Minh Hieu Nguyen, Mourad Baiou, Viet Hung Nguyen, Thi Quynh Trang Vo
{"title":"Generalized nash fairness solutions for bi‐objective minimization problems","authors":"Minh Hieu Nguyen, Mourad Baiou, Viet Hung Nguyen, Thi Quynh Trang Vo","doi":"10.1002/net.22182","DOIUrl":null,"url":null,"abstract":"In this article, we consider a particular case of bi‐objective optimization (BOO), called bi‐objective minimization (BOM), where the two objective functions to be minimized take only positive values. As well as for BOO, most of the methods proposed in the literature for solving BOM focus on computing the Pareto‐optimal solutions representing different trade‐offs between two objectives. However, it may be difficult for a central decision‐maker to determine the preferred solutions due to the huge number of solutions in the Pareto set. We propose a novel criterion for selecting the preferred Pareto‐optimal solutions by introducing the concept of ‐Nash Fairness\n(‐) solutions inspired by the definition of proportional fairness. The ‐ solutions are the feasible solutions achieving some proportional nash equilibrium between the two objectives. The positive parameter is introduced to reflect the relative importance of the first objective to the second one. For this work, we will discuss existential and algorithmic questions about the ‐ solutions by first showing their existence for BOM. Furthermore, the ‐ solution set can be a strict subset of the Pareto set. As there are possibly many ‐ solutions, we focus on extreme ‐ solutions achieving the smallest values for one of the objectives. Then, we propose two Newton‐based iterative algorithms for finding extreme ‐ solutions. Finally, we present computational results on some instances of the bi‐objective travelling salesman problem (BOTSP) and the bi‐objective shortest path problem.","PeriodicalId":54734,"journal":{"name":"Networks","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/net.22182","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider a particular case of bi‐objective optimization (BOO), called bi‐objective minimization (BOM), where the two objective functions to be minimized take only positive values. As well as for BOO, most of the methods proposed in the literature for solving BOM focus on computing the Pareto‐optimal solutions representing different trade‐offs between two objectives. However, it may be difficult for a central decision‐maker to determine the preferred solutions due to the huge number of solutions in the Pareto set. We propose a novel criterion for selecting the preferred Pareto‐optimal solutions by introducing the concept of ‐Nash Fairness (‐) solutions inspired by the definition of proportional fairness. The ‐ solutions are the feasible solutions achieving some proportional nash equilibrium between the two objectives. The positive parameter is introduced to reflect the relative importance of the first objective to the second one. For this work, we will discuss existential and algorithmic questions about the ‐ solutions by first showing their existence for BOM. Furthermore, the ‐ solution set can be a strict subset of the Pareto set. As there are possibly many ‐ solutions, we focus on extreme ‐ solutions achieving the smallest values for one of the objectives. Then, we propose two Newton‐based iterative algorithms for finding extreme ‐ solutions. Finally, we present computational results on some instances of the bi‐objective travelling salesman problem (BOTSP) and the bi‐objective shortest path problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双目标最小化问题的广义纳什公平性解
在本文中,我们考虑了双目标优化(BOO)的一个特殊情况,称为双目标最小化(BOM),其中要最小化的两个目标函数仅取正值。与BOO一样,文献中提出的解决BOM的大多数方法都侧重于计算Pareto最优解,该解代表两个目标之间的不同权衡。然而,由于帕累托集中有大量的解决方案,中央决策者可能很难确定首选解决方案。受比例公平定义的启发,我们引入了纳什公平解的概念,提出了一种选择首选Pareto最优解的新标准。解是实现两个目标之间某种比例纳什均衡的可行解。引入正参数是为了反映第一个目标相对于第二个目标的相对重要性。在这项工作中,我们将通过首先展示BOM的存在性来讨论关于解的存在性和算法问题。此外,解集可以是Pareto集的严格子集。由于可能有许多解决方案,我们专注于为其中一个目标实现最小价值的极端解决方案。然后,我们提出了两种基于牛顿的迭代算法来寻找极值解。最后,我们给出了双目标旅行商问题和双目标最短路径问题的一些实例的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Networks
Networks 工程技术-计算机:硬件
CiteScore
4.40
自引率
9.50%
发文量
46
审稿时长
12 months
期刊介绍: Network problems are pervasive in our modern technological society, as witnessed by our reliance on physical networks that provide power, communication, and transportation. As well, a number of processes can be modeled using logical networks, as in the scheduling of interdependent tasks, the dating of archaeological artifacts, or the compilation of subroutines comprising a large computer program. Networks provide a common framework for posing and studying problems that often have wider applicability than their originating context. The goal of this journal is to provide a central forum for the distribution of timely information about network problems, their design and mathematical analysis, as well as efficient algorithms for carrying out optimization on networks. The nonstandard modeling of diverse processes using networks and network concepts is also of interest. Consequently, the disciplines that are useful in studying networks are varied, including applied mathematics, operations research, computer science, discrete mathematics, and economics. Networks publishes material on the analytic modeling of problems using networks, the mathematical analysis of network problems, the design of computationally efficient network algorithms, and innovative case studies of successful network applications. We do not typically publish works that fall in the realm of pure graph theory (without significant algorithmic and modeling contributions) or papers that deal with engineering aspects of network design. Since the audience for this journal is then necessarily broad, articles that impact multiple application areas or that creatively use new or existing methodologies are especially appropriate. We seek to publish original, well-written research papers that make a substantive contribution to the knowledge base. In addition, tutorial and survey articles are welcomed. All manuscripts are carefully refereed.
期刊最新文献
Finding conserved low‐diameter subgraphs in social and biological networks A survey on optimization studies of group centrality metrics A heuristic with a performance guarantee for the commodity constrained split delivery vehicle routing problem Selecting fast algorithms for the capacitated vehicle routing problem with machine learning techniques Three network design problems for community energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1