{"title":"Questions on the effects of roughness and its analysis in non-equilibrium flows","authors":"R. Volino, W. Devenport, U. Piomelli","doi":"10.1080/14685248.2022.2097688","DOIUrl":null,"url":null,"abstract":"The prediction of turbulent flows over rough surfaces is important for many applications in engineering and in the natural sciences. Since the resolution of the roughness requires significant computational resources, most modelling approaches rely on the related concepts of ‘equivalent sand-grain roughness’ and ‘wall similarity’. While the validity of these concepts is well established for zero-pressure-gradient boundary-layers and for channel flows, such is not the case for non-equilibrium conditions. This raises a number of important questions, some of which are discussed in this paper. We also suggest some possible paths to answering these questions.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"23 1","pages":"454 - 466"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2022.2097688","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 8
Abstract
The prediction of turbulent flows over rough surfaces is important for many applications in engineering and in the natural sciences. Since the resolution of the roughness requires significant computational resources, most modelling approaches rely on the related concepts of ‘equivalent sand-grain roughness’ and ‘wall similarity’. While the validity of these concepts is well established for zero-pressure-gradient boundary-layers and for channel flows, such is not the case for non-equilibrium conditions. This raises a number of important questions, some of which are discussed in this paper. We also suggest some possible paths to answering these questions.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.