{"title":"Bayesian inference for order determination of double threshold variables autoregressive models","authors":"Xiaobing Zheng, Qiang Xia, Rubing Liang","doi":"10.1515/snde-2020-0096","DOIUrl":null,"url":null,"abstract":"Abstract The reversible-jump Markov chain Monte Carlo (RJMCMC) algorithm can generate a jump Markov chain in the parameter space of different dimensions, and select a suitable model effectively. In this paper, when the order of the double threshold variables autoregressive (DT-AR) is unknown, the RJMCMC method is designed to identify the order of the DT-AR model in this paper. The simulation experiments and the real example show that the proposed method works well in identifying the order and estimating the parameters of the DT-AR model simultaneously.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2020-0096","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The reversible-jump Markov chain Monte Carlo (RJMCMC) algorithm can generate a jump Markov chain in the parameter space of different dimensions, and select a suitable model effectively. In this paper, when the order of the double threshold variables autoregressive (DT-AR) is unknown, the RJMCMC method is designed to identify the order of the DT-AR model in this paper. The simulation experiments and the real example show that the proposed method works well in identifying the order and estimating the parameters of the DT-AR model simultaneously.
期刊介绍:
Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.