Structural basis for hypermodification of the wobble uridine in tRNA by bifunctional enzyme MnmC

IF 2.222 Q3 Biochemistry, Genetics and Molecular Biology BMC Structural Biology Pub Date : 2013-04-24 DOI:10.1186/1472-6807-13-5
Jungwook Kim, Steven C Almo
{"title":"Structural basis for hypermodification of the wobble uridine in tRNA by bifunctional enzyme MnmC","authors":"Jungwook Kim,&nbsp;Steven C Almo","doi":"10.1186/1472-6807-13-5","DOIUrl":null,"url":null,"abstract":"<p>Methylaminomethyl modification of uridine or 2-thiouridine (mnm5U34 or mnm5s2U34) at the wobble position of tRNAs specific for glutamate, lysine and arginine are observed in <i>Escherichia coli</i> and allow for specific recognition of codons ending in A or G. In the biosynthetic pathway responsible for this post-transcriptional modification, the bifunctional enzyme MnmC catalyzes the conversion of its hypermodified substrate carboxymethylaminomethyl uridine (cmnm5U34) to mnm5U34. MnmC catalyzes the flavin adenine dinucleotide (FAD)-dependent oxidative cleavage of carboxymethyl group from cmnm5U34 via an imine intermediate to generate aminomethyl uridine (nm5U34), which is subsequently methylated by S-adenosyl-L-methionine (SAM) to yield methylaminomethyl uridine (mnm5U34).</p><p>The X-ray crystal structures of SAM/FAD-bound bifunctional MnmC from <i>Escherichia coli</i> and <i>Yersinia pestis</i>, and FAD-bound bifunctional MnmC from <i>Yersinia pestis</i> were determined and the catalytic functions verified in an <i>in vitro</i> assay.</p><p>The crystal structures of MnmC from two Gram negative bacteria reveal the overall architecture of the enzyme and the relative disposition of the two independent catalytic domains: a Rossmann-fold domain containing the SAM binding site and an FAD containing domain structurally homologous to glycine oxidase from <i>Bacillus subtilis</i>. The structures of MnmC also reveal the detailed atomic interactions at the interdomain interface and provide spatial restraints relevant to the overall catalytic mechanism.</p>","PeriodicalId":498,"journal":{"name":"BMC Structural Biology","volume":"13 1","pages":""},"PeriodicalIF":2.2220,"publicationDate":"2013-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1472-6807-13-5","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/1472-6807-13-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 13

Abstract

Methylaminomethyl modification of uridine or 2-thiouridine (mnm5U34 or mnm5s2U34) at the wobble position of tRNAs specific for glutamate, lysine and arginine are observed in Escherichia coli and allow for specific recognition of codons ending in A or G. In the biosynthetic pathway responsible for this post-transcriptional modification, the bifunctional enzyme MnmC catalyzes the conversion of its hypermodified substrate carboxymethylaminomethyl uridine (cmnm5U34) to mnm5U34. MnmC catalyzes the flavin adenine dinucleotide (FAD)-dependent oxidative cleavage of carboxymethyl group from cmnm5U34 via an imine intermediate to generate aminomethyl uridine (nm5U34), which is subsequently methylated by S-adenosyl-L-methionine (SAM) to yield methylaminomethyl uridine (mnm5U34).

The X-ray crystal structures of SAM/FAD-bound bifunctional MnmC from Escherichia coli and Yersinia pestis, and FAD-bound bifunctional MnmC from Yersinia pestis were determined and the catalytic functions verified in an in vitro assay.

The crystal structures of MnmC from two Gram negative bacteria reveal the overall architecture of the enzyme and the relative disposition of the two independent catalytic domains: a Rossmann-fold domain containing the SAM binding site and an FAD containing domain structurally homologous to glycine oxidase from Bacillus subtilis. The structures of MnmC also reveal the detailed atomic interactions at the interdomain interface and provide spatial restraints relevant to the overall catalytic mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双功能酶MnmC超修饰tRNA中摇摆尿苷的结构基础
在大肠杆菌中观察到在谷氨酸、赖氨酸和精氨酸特异性trna的不稳定位置对尿嘧啶或2-硫尿嘧啶(mnm5U34或mnm5s2U34)进行甲氨基甲基化修饰,并允许特异性识别以A或g结尾的密码子。在负责这种转录后修饰的生物合成途径中,双功能酶MnmC催化其超修饰底物羧甲基氨基甲基尿嘧啶(cmnm5U34)转化为mnm5U34。MnmC通过亚胺中间体催化黄素腺嘌呤二核苷酸(FAD)依赖性氧化裂解cmnm5U34的羧甲基生成氨基甲基尿苷(nm5U34),随后被s -腺苷- l-蛋氨酸(SAM)甲基化生成甲氨基甲基尿苷(mnm5U34)。测定了大肠杆菌和鼠疫耶尔森菌中SAM/ fad结合的双功能MnmC和鼠疫耶尔森菌中fad结合的双功能MnmC的x射线晶体结构,并通过体外实验验证了其催化功能。来自两种革兰氏阴性菌的MnmC晶体结构揭示了酶的整体结构和两个独立催化结构域的相对配置:一个含有SAM结合位点的Rossmann-fold结构域和一个含有与枯草芽孢杆菌中甘氨酸氧化酶结构域同源的FAD结构域。MnmC的结构还揭示了畴间界面上原子相互作用的细节,并提供了与整体催化机制相关的空间约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Structural Biology
BMC Structural Biology 生物-生物物理
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: BMC Structural Biology is an open access, peer-reviewed journal that considers articles on investigations into the structure of biological macromolecules, including solving structures, structural and functional analyses, and computational modeling.
期刊最新文献
Characterization of putative proteins encoded by variable ORFs in white spot syndrome virus genome Correction to: Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region Effect of low complexity regions within the PvMSP3α block II on the tertiary structure of the protein and implications to immune escape mechanisms QRNAS: software tool for refinement of nucleic acid structures Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1