BFT—Low-Latency Bit-Slice Design of Discrete Fourier Transform

IF 1.6 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Low Power Electronics and Applications Pub Date : 2023-07-18 DOI:10.3390/jlpea13030045
C. Guaragnella, A. Giorgio, M. Rizzi
{"title":"BFT—Low-Latency Bit-Slice Design of Discrete Fourier Transform","authors":"C. Guaragnella, A. Giorgio, M. Rizzi","doi":"10.3390/jlpea13030045","DOIUrl":null,"url":null,"abstract":"Structures for the evaluation of fast Fourier transforms are important components in several signal-processing applications and communication systems. Their capabilities play a key role in the performance enhancement of the whole system in which they are embedded. In this paper, a novel implementation of the discrete Fourier transform is proposed, based on a bit-slice approach and on the exploitation of the input sequence finite word length. Input samples of the sequence to be transformed are split into binary sequences and each one is Fourier transformed using only complex sums. An FPGA-based solution characterized by low latency and low power consumption is designed. Simulations have been carried out, first in the Matlab environment, then emulated in Quartus IDE with Intel. The hardware implementation of the conceived system and the test for the functional accuracy verification have been performed, adopting the DE2-115 development board from Terasic, which is equipped with the Cyclone IV EP4CE115F29C7 FPGA by Intel.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea13030045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Structures for the evaluation of fast Fourier transforms are important components in several signal-processing applications and communication systems. Their capabilities play a key role in the performance enhancement of the whole system in which they are embedded. In this paper, a novel implementation of the discrete Fourier transform is proposed, based on a bit-slice approach and on the exploitation of the input sequence finite word length. Input samples of the sequence to be transformed are split into binary sequences and each one is Fourier transformed using only complex sums. An FPGA-based solution characterized by low latency and low power consumption is designed. Simulations have been carried out, first in the Matlab environment, then emulated in Quartus IDE with Intel. The hardware implementation of the conceived system and the test for the functional accuracy verification have been performed, adopting the DE2-115 development board from Terasic, which is equipped with the Cyclone IV EP4CE115F29C7 FPGA by Intel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散傅里叶变换的bft -低延迟位片设计
用于评估快速傅立叶变换的结构是若干信号处理应用和通信系统中的重要组成部分。它们的功能在增强嵌入它们的整个系统的性能方面发挥着关键作用。在本文中,基于位片方法和输入序列有限字长的利用,提出了一种新的离散傅立叶变换的实现方法。要变换的序列的输入样本被分割成二进制序列,并且每个样本仅使用复数和进行傅立叶变换。设计了一种基于FPGA的低延迟、低功耗的解决方案。首先在Matlab环境中进行了仿真,然后在Quartus IDE中与Intel进行了仿真。采用Terasic公司的DE2-115开发板,采用Intel公司的Cyclone IV EP4CE115F29C7 FPGA,完成了系统的硬件实现和功能精度验证测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Low Power Electronics and Applications
Journal of Low Power Electronics and Applications Engineering-Electrical and Electronic Engineering
CiteScore
3.60
自引率
14.30%
发文量
57
审稿时长
11 weeks
期刊最新文献
Understanding Timing Error Characteristics from Overclocked Systolic Multiply–Accumulate Arrays in FPGAs Design and Assessment of Hybrid MTJ/CMOS Circuits for In-Memory-Computation Speed, Power and Area Optimized Monotonic Asynchronous Array Multipliers An Ultra Low Power Integer-N PLL with a High-Gain Sampling Phase Detector for IOT Applications in 65 nm CMOS Design of a Low-Power Delay-Locked Loop-Based 8× Frequency Multiplier in 22 nm FDSOI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1