Security Risk Assessments: Modeling and Risk Level Propagation

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS ACM Transactions on Cyber-Physical Systems Pub Date : 2022-11-04 DOI:10.1145/3569458
D. Angermeier, Hannah Wester, Kristian Beilke, Gerhard Hansch, Jörn Eichler
{"title":"Security Risk Assessments: Modeling and Risk Level Propagation","authors":"D. Angermeier, Hannah Wester, Kristian Beilke, Gerhard Hansch, Jörn Eichler","doi":"10.1145/3569458","DOIUrl":null,"url":null,"abstract":"Security risk assessment is an important task in systems engineering. It is used to derive security requirements for a secure system design and to evaluate design alternatives as well as vulnerabilities. Security risk assessment is also a complex and interdisciplinary task, where experts from the application domain and the security domain have to collaborate and understand each other. Automated and tool-supported approaches are desired to help manage the complexity. However, the models used for system engineering usually focus on functional behavior and lack security-related aspects. Therefore, we present our modeling approach that alleviates communication between the involved experts and features steps of computer-aided modeling to achieve consistency and avoid omission errors. We demonstrate our approach with an example. We also describe how to model impact rating and attack feasibility estimation in a modular fashion, along with the propagation and aggregation of these estimations through the model. As a result, experts can make local decisions or changes in the model, which in turn provides the impact of these decisions or changes on the overall risk profile. Finally, we discuss the advantages of our model-based method.","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":"7 1","pages":"1 - 25"},"PeriodicalIF":2.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Security risk assessment is an important task in systems engineering. It is used to derive security requirements for a secure system design and to evaluate design alternatives as well as vulnerabilities. Security risk assessment is also a complex and interdisciplinary task, where experts from the application domain and the security domain have to collaborate and understand each other. Automated and tool-supported approaches are desired to help manage the complexity. However, the models used for system engineering usually focus on functional behavior and lack security-related aspects. Therefore, we present our modeling approach that alleviates communication between the involved experts and features steps of computer-aided modeling to achieve consistency and avoid omission errors. We demonstrate our approach with an example. We also describe how to model impact rating and attack feasibility estimation in a modular fashion, along with the propagation and aggregation of these estimations through the model. As a result, experts can make local decisions or changes in the model, which in turn provides the impact of these decisions or changes on the overall risk profile. Finally, we discuss the advantages of our model-based method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
安全风险评估:建模和风险水平传播
安全风险评估是系统工程中的一项重要任务。它用于推导安全系统设计的安全要求,并评估设计备选方案和漏洞。安全风险评估也是一项复杂的跨学科任务,应用领域和安全领域的专家必须相互协作和了解。需要自动化和工具支持的方法来帮助管理复杂性。然而,用于系统工程的模型通常侧重于功能行为,而缺乏与安全相关的方面。因此,我们提出了我们的建模方法,该方法减轻了相关专家之间的沟通,并提供了计算机辅助建模的特征步骤,以实现一致性并避免遗漏错误。我们用一个例子来展示我们的方法。我们还描述了如何以模块化的方式对影响评级和攻击可行性估计进行建模,以及这些估计在模型中的传播和聚合。因此,专家可以对模型进行局部决策或更改,从而提供这些决策或更改对整体风险状况的影响。最后,我们讨论了基于模型的方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Cyber-Physical Systems
ACM Transactions on Cyber-Physical Systems COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.70
自引率
4.30%
发文量
40
期刊最新文献
On Cyber-Physical Fault Resilience in Data Communication: A Case From A LoRaWAN Network Systems Design DistressNet-NG: A Resilient Data Storage and Sharing Framework for Mobile Edge Computing in Cyber-Physical Systems A Blockchain Architecture to Increase the Resilience of Industrial Control Systems from the Effects of a Ransomware Attack: A Proposal and Initial Results A Combinatorial Optimization Analysis Method for Detecting Malicious Industrial Internet Attack Behaviors Statistical Verification using Surrogate Models and Conformal Inference and a Comparison with Risk-aware Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1