Yaguang Lin, Xiaoming Wang, Liang Wang, Pengfei Wan
{"title":"Dynamics modeling and optimal control for multi-information diffusion in Social Internet of Things","authors":"Yaguang Lin, Xiaoming Wang, Liang Wang, Pengfei Wan","doi":"10.1016/j.dcan.2023.02.014","DOIUrl":null,"url":null,"abstract":"<div><p>As an ingenious convergence between the Internet of Things and social networks, the Social Internet of Things (SIoT) can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information. Nevertheless, SIoT is characterized by high openness and autonomy, multiple kinds of information can spread rapidly, freely and cooperatively in SIoT, which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion. To this end, with the aim of exploring multi-information cooperative diffusion processes in SIoT, we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper. Subsequently, the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated, and the diffusion trend is predicted. On this basis, to further control the multi-information cooperative diffusion process efficiently, we propose two control strategies for information diffusion with control objectives, develop an optimal control system for the multi-information cooperative diffusion process, and propose the corresponding optimal control method. The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory. Finally, extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model, strategy and method.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864823000500/pdfft?md5=ed3412c993d198e5d878f138ec31b3bb&pid=1-s2.0-S2352864823000500-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823000500","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
As an ingenious convergence between the Internet of Things and social networks, the Social Internet of Things (SIoT) can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information. Nevertheless, SIoT is characterized by high openness and autonomy, multiple kinds of information can spread rapidly, freely and cooperatively in SIoT, which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion. To this end, with the aim of exploring multi-information cooperative diffusion processes in SIoT, we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper. Subsequently, the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated, and the diffusion trend is predicted. On this basis, to further control the multi-information cooperative diffusion process efficiently, we propose two control strategies for information diffusion with control objectives, develop an optimal control system for the multi-information cooperative diffusion process, and propose the corresponding optimal control method. The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory. Finally, extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model, strategy and method.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.