{"title":"Learning causal theories with non-reversible MCMC methods","authors":"Antonina Krajewska","doi":"10.2478/candc-2021-0021","DOIUrl":null,"url":null,"abstract":"Abstract Causal laws are defined in terms of concepts and the causal relations between them. Following Kemp et al. (2010), we investigate the performance of the hierarchical Bayesian model, in which causal systems are represented by directed acyclic graphs (DAGs) with nodes divided into distinct categories. This paper presents two non-reversible search and score algorithms (Q1 and Q2) and their application to the causal learning system. The algorithms run through the pairs of class-assignment vectors and graph structures and choose the one which maximizes the probability of given observations. The model discovers latent classes in relational data and the number of these classes and predicts relations between objects belonging to them. We evaluate its performance on prediction tasks from the behavioural experiment about human cognition. Within the discussed approach, we solve a simplified prediction problem when object classification is known in advance. Finally, we describe the experimental procedure allowing in-depth analysis of the efficiency and scalability of both search and score algorithms.","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"50 1","pages":"323 - 361"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2021-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Causal laws are defined in terms of concepts and the causal relations between them. Following Kemp et al. (2010), we investigate the performance of the hierarchical Bayesian model, in which causal systems are represented by directed acyclic graphs (DAGs) with nodes divided into distinct categories. This paper presents two non-reversible search and score algorithms (Q1 and Q2) and their application to the causal learning system. The algorithms run through the pairs of class-assignment vectors and graph structures and choose the one which maximizes the probability of given observations. The model discovers latent classes in relational data and the number of these classes and predicts relations between objects belonging to them. We evaluate its performance on prediction tasks from the behavioural experiment about human cognition. Within the discussed approach, we solve a simplified prediction problem when object classification is known in advance. Finally, we describe the experimental procedure allowing in-depth analysis of the efficiency and scalability of both search and score algorithms.
期刊介绍:
The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research:
Systems and control theory:
general systems theory,
optimal cotrol,
optimization theory,
data analysis, learning, artificial intelligence,
modelling & identification,
game theory, multicriteria optimisation, decision and negotiation methods,
soft approaches: stochastic and fuzzy methods,
computer science,