Neural networks for quantile claim amount estimation: a quantile regression approach

IF 1.5 Q3 BUSINESS, FINANCE Annals of Actuarial Science Pub Date : 2023-05-17 DOI:10.1017/s1748499523000106
Alessandro G. Laporta, Susanna Levantesi, L. Petrella
{"title":"Neural networks for quantile claim amount estimation: a quantile regression approach","authors":"Alessandro G. Laporta, Susanna Levantesi, L. Petrella","doi":"10.1017/s1748499523000106","DOIUrl":null,"url":null,"abstract":"\n In this paper, we discuss the estimation of conditional quantiles of aggregate claim amounts for non-life insurance embedding the problem in a quantile regression framework using the neural network approach. As the first step, we consider the quantile regression neural networks (QRNN) procedure to compute quantiles for the insurance ratemaking framework. As the second step, we propose a new quantile regression combined actuarial neural network (Quantile-CANN) combining the traditional quantile regression approach with a QRNN. In both cases, we adopt a two-part model scheme where we fit a logistic regression to estimate the probability of positive claims and the QRNN model or the Quantile-CANN for the positive outcomes. Through a case study based on a health insurance dataset, we highlight the overall better performances of the proposed models with respect to the classical quantile regression one. We then use the estimated quantiles to calculate a loaded premium following the quantile premium principle, showing that the proposed models provide a better risk differentiation.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499523000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we discuss the estimation of conditional quantiles of aggregate claim amounts for non-life insurance embedding the problem in a quantile regression framework using the neural network approach. As the first step, we consider the quantile regression neural networks (QRNN) procedure to compute quantiles for the insurance ratemaking framework. As the second step, we propose a new quantile regression combined actuarial neural network (Quantile-CANN) combining the traditional quantile regression approach with a QRNN. In both cases, we adopt a two-part model scheme where we fit a logistic regression to estimate the probability of positive claims and the QRNN model or the Quantile-CANN for the positive outcomes. Through a case study based on a health insurance dataset, we highlight the overall better performances of the proposed models with respect to the classical quantile regression one. We then use the estimated quantiles to calculate a loaded premium following the quantile premium principle, showing that the proposed models provide a better risk differentiation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分位数索赔金额估计的神经网络:一种分位数回归方法
在本文中,我们讨论了使用神经网络方法将问题嵌入分位数回归框架中的非人寿保险总索赔金额的条件分位数的估计。作为第一步,我们考虑分位数回归神经网络(QRNN)程序来计算保险费率制定框架的分位数。作为第二步,我们将传统的分位数回归方法与QRNN相结合,提出了一种新的分位数-回归组合精算神经网络(quantile CANN)。在这两种情况下,我们都采用了两部分模型方案,其中我们拟合逻辑回归来估计积极索赔的概率,并拟合QRNN模型或Quantile CANN来估计积极结果。通过基于健康保险数据集的案例研究,我们强调了所提出的模型相对于经典分位数回归模型的总体性能更好。然后,我们根据分位数保费原则,使用估计的分位数来计算负载保费,表明所提出的模型提供了更好的风险区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
期刊最新文献
Generalized Poisson random variable: its distributional properties and actuarial applications Optimizing insurance risk assessment: a regression model based on a risk-loaded approach Bonus-Malus Scale premiums for Tweedie’s compound Poisson models Risk analysis of a multivariate aggregate loss model with dependence Valuation of guaranteed minimum accumulation benefits (GMABs) with physics-inspired neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1