Innovative use of change detection in large numbers of satellite scenes, with geological applications

IF 1.3 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Quarterly Journal of Engineering Geology and Hydrogeology Pub Date : 2022-06-10 DOI:10.1144/qjegh2022-048
P. Cole, H. Coetzee
{"title":"Innovative use of change detection in large numbers of satellite scenes, with geological applications","authors":"P. Cole, H. Coetzee","doi":"10.1144/qjegh2022-048","DOIUrl":null,"url":null,"abstract":"The large number of remote sensing datasets available necessitates the development of efficient methods when assessing change between such data. A series of techniques, optimising the analysis of change detection, specifically on large remote sensing dataset collections, is demonstrated. Iterative (online) statistical measures for mean and standard deviation give the ability to gain a measure of change over potentially hundreds of datasets without excessive computing power being needed. From this, the coefficient of variation can be used to provide further insight. Using such measures, seasonal change can be detected on outcrop (as opposed to vegetation), illustrating that change detection can be used to further extend a spectral signature for rocks. Twelve Sentinel-2 scenes over a three-year period were used in this study.Thematic collection: This article is part of the Remote sensing for site investigations on Earth and other planets collection available at: https://www.lyellcollection.org/cc/remote-sensing-for-site-investigations-on-earth-and-other-planets","PeriodicalId":20937,"journal":{"name":"Quarterly Journal of Engineering Geology and Hydrogeology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Engineering Geology and Hydrogeology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/qjegh2022-048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The large number of remote sensing datasets available necessitates the development of efficient methods when assessing change between such data. A series of techniques, optimising the analysis of change detection, specifically on large remote sensing dataset collections, is demonstrated. Iterative (online) statistical measures for mean and standard deviation give the ability to gain a measure of change over potentially hundreds of datasets without excessive computing power being needed. From this, the coefficient of variation can be used to provide further insight. Using such measures, seasonal change can be detected on outcrop (as opposed to vegetation), illustrating that change detection can be used to further extend a spectral signature for rocks. Twelve Sentinel-2 scenes over a three-year period were used in this study.Thematic collection: This article is part of the Remote sensing for site investigations on Earth and other planets collection available at: https://www.lyellcollection.org/cc/remote-sensing-for-site-investigations-on-earth-and-other-planets
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在大量卫星场景中创新使用变化检测,并具有地质应用
现有的大量遥感数据集需要在评估这些数据之间的变化时开发有效的方法。演示了一系列优化变化检测分析的技术,特别是在大型遥感数据集上。平均值和标准差的迭代(在线)统计测量提供了在不需要过度计算能力的情况下获得潜在数百个数据集的变化测量的能力。由此,可以使用变异系数来提供进一步的见解。使用这些措施,可以在露头(而不是植被)上检测到季节变化,这表明变化检测可以用于进一步扩展岩石的光谱特征。本研究使用了三年时间内的12个Sentinel-2场景。专题集:本文是地球和其他行星遥感现场调查集的一部分,可在以下网站获取:https://www.lyellcollection.org/cc/remote-sensing-for-site-investigations-on-earth-and-other-planets
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
14.30%
发文量
66
审稿时长
6 months
期刊介绍: Quarterly Journal of Engineering Geology and Hydrogeology is owned by the Geological Society of London and published by the Geological Society Publishing House. Quarterly Journal of Engineering Geology & Hydrogeology (QJEGH) is an established peer reviewed international journal featuring papers on geology as applied to civil engineering mining practice and water resources. Papers are invited from, and about, all areas of the world on engineering geology and hydrogeology topics. This includes but is not limited to: applied geophysics, engineering geomorphology, environmental geology, hydrogeology, groundwater quality, ground source heat, contaminated land, waste management, land use planning, geotechnics, rock mechanics, geomaterials and geological hazards. The journal publishes the prestigious Glossop and Ineson lectures, research papers, case studies, review articles, technical notes, photographic features, thematic sets, discussion papers, editorial opinion and book reviews.
期刊最新文献
Degradation and protection of cut slopes in weathered gneiss; a 40-year case study Development of a drought-resilient water supply from dolomitized limestones of the Irish Midlands Understanding the Behavior of Seismically Derived Poisson's Ratio in Near Surface Characterization Jet grouting to new depths in the Lambeth Group and Thanet Formation beneath London Size Effect of Anisotropy in Rocks Spatial Variability: Evaluating through Digital Drilling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1