Implementasi Fuzzy Logic Untuk Identifikasi Jenis Gangguan Tegangan Secara Realtime

Ahmad Alvi Syahrin, D. Anggriawan, Eka Prasetyono
{"title":"Implementasi Fuzzy Logic Untuk Identifikasi Jenis Gangguan Tegangan Secara Realtime","authors":"Ahmad Alvi Syahrin, D. Anggriawan, Eka Prasetyono","doi":"10.17529/jre.v16i3.17692","DOIUrl":null,"url":null,"abstract":"In the modern era, AC voltage variations are still often a problem. This variation causes power quality decrease even damage the equipment. Voltage variations that often occur are short and long duration. The variation consist of 6 types namely Interruption, Sag, Swell, Sustained-Interruption, Undervoltage, Overvoltage. To facilitate repairs when there is a voltage variation in the electric power system, it is necessary to have an identification that can detect and distinguish any interference that occurs. Therefore, this paper proposes a fuzzy logic method for identifying types of voltage variations. This type of voltage variation identifier requires a disturbance simulator as a voltage source with varying values. To distinguish between short duration and long duration disturbances, is the time duration of the disturbance appears. The design of the voltage variation identification algorithm uses the sugeno fuzzy inference system with 2 inputs namely magnitude vrms and timer, and 1 output is the type of voltage interference. Moreover, prototype design using AMC1200 voltage sensor, microcontroller, and display. To validate the proposed algorithm, compared with standard measuring tools and simulations. Results show that the proposed algorithm has a very good performance with an accuration compared to the standard measuring instrument of 99.8%.","PeriodicalId":30766,"journal":{"name":"Jurnal Rekayasa Elektrika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Rekayasa Elektrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17529/jre.v16i3.17692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the modern era, AC voltage variations are still often a problem. This variation causes power quality decrease even damage the equipment. Voltage variations that often occur are short and long duration. The variation consist of 6 types namely Interruption, Sag, Swell, Sustained-Interruption, Undervoltage, Overvoltage. To facilitate repairs when there is a voltage variation in the electric power system, it is necessary to have an identification that can detect and distinguish any interference that occurs. Therefore, this paper proposes a fuzzy logic method for identifying types of voltage variations. This type of voltage variation identifier requires a disturbance simulator as a voltage source with varying values. To distinguish between short duration and long duration disturbances, is the time duration of the disturbance appears. The design of the voltage variation identification algorithm uses the sugeno fuzzy inference system with 2 inputs namely magnitude vrms and timer, and 1 output is the type of voltage interference. Moreover, prototype design using AMC1200 voltage sensor, microcontroller, and display. To validate the proposed algorithm, compared with standard measuring tools and simulations. Results show that the proposed algorithm has a very good performance with an accuration compared to the standard measuring instrument of 99.8%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别实时强度无序类型的模糊逻辑实现
在现代,交流电压变化仍然经常是一个问题。这种变化会导致电能质量下降甚至损坏设备。经常发生的电压变化是持续时间短和持续时间长。变化包括6种类型,即中断、凹陷、膨胀、持续中断、欠电压、过电压。当电力系统中存在电压变化时,为了便于维修,有必要具有能够检测和区分任何干扰的标识。因此,本文提出了一种识别电压变化类型的模糊逻辑方法。这种类型的电压变化识别器需要扰动模拟器作为具有变化值的电压源。区分短持续时间扰动和长持续时间扰动,是扰动出现的持续时间。电压变化识别算法的设计使用sugeno模糊推理系统,该系统有2个输入,即幅值vrms和定时器,1个输出是电压干扰类型。此外,原型设计采用AMC1200电压传感器、微控制器和显示器。验证了所提出的算法,并与标准测量工具和仿真进行了比较。结果表明,该算法具有很好的性能,与标准测量仪器相比,准确率为99.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
24 weeks
期刊最新文献
Impact of Segmentation and Popularity-based Cache Replacement Policies on Named Data Networking Real-Time Detection of Power Quality Disturbance Using Fast Fourier Transform and Adaptive Neuro-Fuzzy Inference System Wireless Photoplethysmography (PPG) Measurement with Pulse Wave Velocity (PWV) Method for Arterial Stiffness Evaluation Augmentation of Additional Arabic Dataset for Jawi Writing and Classification Using Deep Learning Anomaly Detection for Security in Children's Play Areas Based on Image Using Multiple Lines Detection Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1