Multivariate Insurance Portfolio Risk Retention Using the Method of Multipliers

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-01-27 DOI:10.1080/10920277.2022.2161578
Gee Y. Lee
{"title":"Multivariate Insurance Portfolio Risk Retention Using the Method of Multipliers","authors":"Gee Y. Lee","doi":"10.1080/10920277.2022.2161578","DOIUrl":null,"url":null,"abstract":"For an insurance company insuring multiple risks, capital allocation is an important practical problem. In the capital allocation problem, the insurance company must determine the amount of capital to assign to each policy or, equivalently, the amount of premium to be collected from each policy. Doing this relates to the problem of determining the risk retention parameters for each policy within the portfolio. In this article, the insurance risk retention problem of determining the optimal retention parameters is explored in a multivariate context. Given an underlying claims distribution and premium constraint, we are interested in finding the optimal amount of risk to retain or, equivalently, which level of risk retention parameters should be chosen by an insurance company. The risk retention parameter may be deductible (d), upper limit (u), or coinsurance (c). We present a numerical approach to solving the risk retention problem using the method of multipliers and illustrate how it can be implemented. In a case study, the minimum amount of premium to be collected is used as a constraint to the optimization and the upper limit is optimized for each policyholder. A Bayesian approach is taken for estimation of the parameters in a simple model involving regional effects and individual policyholder effects for the Wisconsin Local Government Property Insurance Fund (LGPIF) data, where the parameter estimation is performed in the R computing environment using the Stan library.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2022.2161578","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For an insurance company insuring multiple risks, capital allocation is an important practical problem. In the capital allocation problem, the insurance company must determine the amount of capital to assign to each policy or, equivalently, the amount of premium to be collected from each policy. Doing this relates to the problem of determining the risk retention parameters for each policy within the portfolio. In this article, the insurance risk retention problem of determining the optimal retention parameters is explored in a multivariate context. Given an underlying claims distribution and premium constraint, we are interested in finding the optimal amount of risk to retain or, equivalently, which level of risk retention parameters should be chosen by an insurance company. The risk retention parameter may be deductible (d), upper limit (u), or coinsurance (c). We present a numerical approach to solving the risk retention problem using the method of multipliers and illustrate how it can be implemented. In a case study, the minimum amount of premium to be collected is used as a constraint to the optimization and the upper limit is optimized for each policyholder. A Bayesian approach is taken for estimation of the parameters in a simple model involving regional effects and individual policyholder effects for the Wisconsin Local Government Property Insurance Fund (LGPIF) data, where the parameter estimation is performed in the R computing environment using the Stan library.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于乘数方法的多变量保险组合风险保持
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1