Hisashi Mizutani, Hideaki Sugawara, Ashley M. Buckle, Takeshi Sangawa, Ken-ichi Miyazono, Jun Ohtsuka, Koji Nagata, Tomoki Shojima, Shohei Nosaki, Yuqun Xu, Delong Wang, Xiao Hu, Masaru Tanokura, Kei Yura
{"title":"REFOLDdb: a new and sustainable gateway to experimental protocols for protein refolding","authors":"Hisashi Mizutani, Hideaki Sugawara, Ashley M. Buckle, Takeshi Sangawa, Ken-ichi Miyazono, Jun Ohtsuka, Koji Nagata, Tomoki Shojima, Shohei Nosaki, Yuqun Xu, Delong Wang, Xiao Hu, Masaru Tanokura, Kei Yura","doi":"10.1186/s12900-017-0074-z","DOIUrl":null,"url":null,"abstract":"<p>More than 7000 papers related to “protein refolding” have been published to date, with approximately 300 reports each year during the last decade. Whilst some of these papers provide experimental protocols for protein refolding, a survey in the structural life science communities showed a necessity for a comprehensive database for refolding techniques. We therefore have developed a new resource – “REFOLDdb” that collects refolding techniques into a single, searchable repository to help researchers develop refolding protocols for proteins of interest.</p><p>We based our resource on the existing REFOLD database, which has not been updated since 2009. We redesigned the data format to be more concise, allowing consistent representations among data entries compared with the original REFOLD database. The remodeled data architecture enhances the search efficiency and improves the sustainability of the database. After an exhaustive literature search we added experimental refolding protocols from reports published 2009 to early 2017. In addition to this new data, we fully converted and integrated existing REFOLD data into our new resource. REFOLDdb contains 1877 entries as of March 17<sup>th</sup>, 2017, and is freely available at http://p4d-info.nig.ac.jp/refolddb/.</p><p>REFOLDdb is a unique database for the life sciences research community, providing annotated information for designing new refolding protocols and customizing existing methodologies. We envisage that this resource will find wide utility across broad disciplines that rely on the production of pure, active, recombinant proteins. Furthermore, the database also provides a useful overview of the recent trends and statistics in refolding technology development.</p>","PeriodicalId":498,"journal":{"name":"BMC Structural Biology","volume":"17 1","pages":""},"PeriodicalIF":2.2220,"publicationDate":"2017-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12900-017-0074-z","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s12900-017-0074-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10
Abstract
More than 7000 papers related to “protein refolding” have been published to date, with approximately 300 reports each year during the last decade. Whilst some of these papers provide experimental protocols for protein refolding, a survey in the structural life science communities showed a necessity for a comprehensive database for refolding techniques. We therefore have developed a new resource – “REFOLDdb” that collects refolding techniques into a single, searchable repository to help researchers develop refolding protocols for proteins of interest.
We based our resource on the existing REFOLD database, which has not been updated since 2009. We redesigned the data format to be more concise, allowing consistent representations among data entries compared with the original REFOLD database. The remodeled data architecture enhances the search efficiency and improves the sustainability of the database. After an exhaustive literature search we added experimental refolding protocols from reports published 2009 to early 2017. In addition to this new data, we fully converted and integrated existing REFOLD data into our new resource. REFOLDdb contains 1877 entries as of March 17th, 2017, and is freely available at http://p4d-info.nig.ac.jp/refolddb/.
REFOLDdb is a unique database for the life sciences research community, providing annotated information for designing new refolding protocols and customizing existing methodologies. We envisage that this resource will find wide utility across broad disciplines that rely on the production of pure, active, recombinant proteins. Furthermore, the database also provides a useful overview of the recent trends and statistics in refolding technology development.
期刊介绍:
BMC Structural Biology is an open access, peer-reviewed journal that considers articles on investigations into the structure of biological macromolecules, including solving structures, structural and functional analyses, and computational modeling.