An Automated Python Script for Data Cleaning and Labeling using Machine Learning Technique

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Informatica Pub Date : 2023-06-22 DOI:10.31449/inf.v47i6.4474
M. A. Oladipupo, Princewill Chima Obuzor, Babatunde J. Bamgbade, A. Adeniyi, Kazeem M. Olagunju, S. A. Ajagbe
{"title":"An Automated Python Script for Data Cleaning and Labeling using Machine Learning Technique","authors":"M. A. Oladipupo, Princewill Chima Obuzor, Babatunde J. Bamgbade, A. Adeniyi, Kazeem M. Olagunju, S. A. Ajagbe","doi":"10.31449/inf.v47i6.4474","DOIUrl":null,"url":null,"abstract":"was to obtain a financial dataset from the top database, \"Kaggle\". Create a machine learning (ML) approach in Python that intends to automate the financial dataset cleaning. This covers ingesting data, addressing incomplete data, addressing anomalies, one-hot wrapping and label encoding, extracting date and time values, and data normalization. Implementing an unsupervised machine learning method that attempts to automate financial dataset labeling (k-means). Using the method includes the elbow principle, k-means clustering, data modeling of \"age\" versus \"arrival,\" dimensionality reductions, computer vision, and dataset categorizing using the groupings. An e mpirical assessment of the cleaned and labeled automated trading dataset utilizing a comparison of the cleaned dataset before and after PCA adoption. The results show that the developed ML technique not only improved the performance of the audit data used in this study, but also classified the data after cleaning it and removing the unpleasant section and incomplete data, as shown by the k-means segmentation result and grouping by PCA.","PeriodicalId":56292,"journal":{"name":"Informatica","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.31449/inf.v47i6.4474","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

was to obtain a financial dataset from the top database, "Kaggle". Create a machine learning (ML) approach in Python that intends to automate the financial dataset cleaning. This covers ingesting data, addressing incomplete data, addressing anomalies, one-hot wrapping and label encoding, extracting date and time values, and data normalization. Implementing an unsupervised machine learning method that attempts to automate financial dataset labeling (k-means). Using the method includes the elbow principle, k-means clustering, data modeling of "age" versus "arrival," dimensionality reductions, computer vision, and dataset categorizing using the groupings. An e mpirical assessment of the cleaned and labeled automated trading dataset utilizing a comparison of the cleaned dataset before and after PCA adoption. The results show that the developed ML technique not only improved the performance of the audit data used in this study, but also classified the data after cleaning it and removing the unpleasant section and incomplete data, as shown by the k-means segmentation result and grouping by PCA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习技术进行数据清理和标记的自动Python脚本
是从顶级数据库“Kaggle”中获得一个金融数据集。在Python中创建一种机器学习(ML)方法,旨在自动化金融数据集清理。这包括接收数据、处理不完整数据、处理异常、一次热包装和标签编码、提取日期和时间值以及数据规范化。实现了一种无监督的机器学习方法,该方法试图自动化金融数据集标记(k-means)。使用该方法包括肘部原理、k-means聚类、“年龄”与“到达”的数据建模、降维、计算机视觉和使用分组的数据集分类。利用PCA采用前后清洁数据集的比较,对清洁和标记的自动交易数据集进行实证评估。结果表明,所开发的ML技术不仅提高了本研究中使用的审计数据的性能,而且在清理数据并去除不愉快的部分和不完整的数据后对数据进行了分类,如k-means分割结果和PCA分组所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatica
Informatica 工程技术-计算机:信息系统
CiteScore
5.90
自引率
6.90%
发文量
19
审稿时长
12 months
期刊介绍: The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.
期刊最新文献
Beyond Quasi-Adjoint Graphs: On Polynomial-Time Solvable Cases of the Hamiltonian Cycle and Path Problems Confidential Transaction Balance Verification by the Net Using Non-Interactive Zero-Knowledge Proofs An Improved Algorithm for Extracting Frequent Gradual Patterns Offloaded Data Processing Energy Efficiency Evaluation Demystifying the Stability and the Performance Aspects of CoCoSo Ranking Method under Uncertain Preferences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1