Fault detection in photovoltaic systems using the inverse of the belonging individual Gaussian probability

Q3 Engineering Diagnostyka Pub Date : 2023-02-20 DOI:10.29354/diag/161318
Salah Sendjasni, B. Yagoubi, M. Daoud, N. Belbachir, Abderrezzaq Ziane
{"title":"Fault detection in photovoltaic systems using the inverse of the belonging individual Gaussian probability","authors":"Salah Sendjasni, B. Yagoubi, M. Daoud, N. Belbachir, Abderrezzaq Ziane","doi":"10.29354/diag/161318","DOIUrl":null,"url":null,"abstract":"This article addresses the problem of fault early detection in photovoltaic systems. In the production field, solar power plants consist of many photovoltaic arrays, which may suffer from many different types of malfunctions over time. Hence, fault early detection before it affects PV systems and leads to a full system failure is essential to monitor these systems. The fields of control and monitoring of systems have been extensively approached by many researchers using various fault detection methods. Despite all this research, to early detect and locate faults in a very large photovoltaic power plant, we must, in particular, think of an effective method that allows us to do so at the lowest costs and time. Thus, we propose a new robust technique based on the inverse of the belonging individual Gaussian probability (IBIGP) to early detect and locate faults in the power curve as well as in the Infrared image of the photovoltaic systems. While most fault detection methods are well incorporated in other domains, the IBIGP technique is still in its infancy in the photovoltaic field. We will show, however, in this work that the IBIGP technique is a very promising tool for fault early detection enhancement.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/161318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the problem of fault early detection in photovoltaic systems. In the production field, solar power plants consist of many photovoltaic arrays, which may suffer from many different types of malfunctions over time. Hence, fault early detection before it affects PV systems and leads to a full system failure is essential to monitor these systems. The fields of control and monitoring of systems have been extensively approached by many researchers using various fault detection methods. Despite all this research, to early detect and locate faults in a very large photovoltaic power plant, we must, in particular, think of an effective method that allows us to do so at the lowest costs and time. Thus, we propose a new robust technique based on the inverse of the belonging individual Gaussian probability (IBIGP) to early detect and locate faults in the power curve as well as in the Infrared image of the photovoltaic systems. While most fault detection methods are well incorporated in other domains, the IBIGP technique is still in its infancy in the photovoltaic field. We will show, however, in this work that the IBIGP technique is a very promising tool for fault early detection enhancement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于归属个体高斯概率逆的光伏系统故障检测
本文讨论了光伏系统中的故障早期检测问题。在生产领域,太阳能发电厂由许多光伏阵列组成,随着时间的推移,这些阵列可能会出现许多不同类型的故障。因此,在故障影响光伏系统并导致整个系统故障之前进行早期检测对于监测这些系统至关重要。许多研究人员使用各种故障检测方法对系统的控制和监测领域进行了广泛的研究。尽管进行了所有这些研究,但为了早期发现和定位大型光伏发电厂的故障,我们尤其必须想出一种有效的方法,使我们能够以最低的成本和时间做到这一点。因此,我们提出了一种基于归属个体高斯概率倒数(IBIGP)的新的鲁棒技术,以早期检测和定位光伏系统的功率曲线和红外图像中的故障。虽然大多数故障检测方法都很好地融入了其他领域,但IBIGP技术在光伏领域仍处于起步阶段。然而,我们将在这项工作中表明,IBIGP技术是一种非常有前途的故障早期检测增强工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Diagnostyka
Diagnostyka Engineering-Mechanical Engineering
CiteScore
2.20
自引率
0.00%
发文量
41
期刊介绍: Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.
期刊最新文献
Construction and application of a bearing fault diagnosis model based on improved GWO algorithm Failure identification and isolation of DC-DC boost converter using a sliding mode controller and adaptive threshold Diagnosis of voltage unbalance state in a system with power converter Diagnostics of production processes using selected Lean Manufacturing tools Enhancing the performance of solar boost converter using Gray Wolf optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1