G. Canneto, A. Tizzoni, S. Sau, E. Mansi, W. Gaggioli, A. Spadoni, N. Corsaro, M. Capocelli, G. Caputo, Francisca Galindo Paniagua, A. Della Libera
{"title":"Thermocline thermal storage for CSP applications: characterization of novel nitrate salt mixtures","authors":"G. Canneto, A. Tizzoni, S. Sau, E. Mansi, W. Gaggioli, A. Spadoni, N. Corsaro, M. Capocelli, G. Caputo, Francisca Galindo Paniagua, A. Della Libera","doi":"10.1115/1.4055295","DOIUrl":null,"url":null,"abstract":"\n Parabolic trough concentrated solar power plants (PTCSP) are particularly promising renewable sources of energy, whose easy integration with Thermal Energy Storage (TES) systems allows to mitigate the intermittency of electricity generation. Currently, molten nitrates, with a two tanks arrangement, are mainly used for sensible heat accumulation. In order to reduce costs and make the CSP storage systems more manageable, single tank configurations have been proposed, where the cold and hot fluids are stored in the same container, and separated because of their density difference. The aim of the present work is to study the storage performances presented by two novel ternary and quaternary mixtures, proposed within the European project IN-POWER. An experimental campaign was preliminarily performed to investigate the fluids thermo-physical properties, and the obtained values were utilized as input data to model the discharge phase in a thermocline tank. The simulation results were compared with the ones acquired considering two commercial materials, namely, Solar Salt and Hitec XL®. Overall, considering same temperature ranges, higher discharging times are obtained for the quaternary and ternary mixtures, with the ternary presenting a smaller thermocline thickness than the solar salt while this parameter is the same considering the quaternary and Hitec XL®.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055295","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2
Abstract
Parabolic trough concentrated solar power plants (PTCSP) are particularly promising renewable sources of energy, whose easy integration with Thermal Energy Storage (TES) systems allows to mitigate the intermittency of electricity generation. Currently, molten nitrates, with a two tanks arrangement, are mainly used for sensible heat accumulation. In order to reduce costs and make the CSP storage systems more manageable, single tank configurations have been proposed, where the cold and hot fluids are stored in the same container, and separated because of their density difference. The aim of the present work is to study the storage performances presented by two novel ternary and quaternary mixtures, proposed within the European project IN-POWER. An experimental campaign was preliminarily performed to investigate the fluids thermo-physical properties, and the obtained values were utilized as input data to model the discharge phase in a thermocline tank. The simulation results were compared with the ones acquired considering two commercial materials, namely, Solar Salt and Hitec XL®. Overall, considering same temperature ranges, higher discharging times are obtained for the quaternary and ternary mixtures, with the ternary presenting a smaller thermocline thickness than the solar salt while this parameter is the same considering the quaternary and Hitec XL®.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.