Shallow hot-point drill system for active layer temperature measurement along Zhongshan–Dome A traverse, Antarctica

IF 2.5 4区 地球科学 Q2 GEOGRAPHY, PHYSICAL Annals of Glaciology Pub Date : 2021-01-18 DOI:10.1017/aog.2020.87
Yazhou Li, Xiaopeng Fan, P. Talalay, Yinke Dou, Siyu Lu, Shi-chang Kang, Xiao Li, Jialin Hong
{"title":"Shallow hot-point drill system for active layer temperature measurement along Zhongshan–Dome A traverse, Antarctica","authors":"Yazhou Li, Xiaopeng Fan, P. Talalay, Yinke Dou, Siyu Lu, Shi-chang Kang, Xiao Li, Jialin Hong","doi":"10.1017/aog.2020.87","DOIUrl":null,"url":null,"abstract":"Abstract In glaciology, snow–firn temperature at 10 m is considered a representation of the mean annual air temperature at the surface (MAAT) of the studied site. Although MAAT is an important parameter in ice-sheet investigations, it has not been widely measured in Antarctica. To measure the 10 m snow–firn temperature in Antarctica, a shallow hot-point drill system is designed. In this simple and lightweight system, a hot-point drill can melt boreholes with a diameter of 34 mm in the snow–firn to a depth of 30 m and a temperature sensors string can measure the borehole temperature precisely. In the 2018/19 field season, 16 boreholes along the Zhongshan–Dome A traverse were drilled, and the borehole temperature was measured. Although certain problems existed pertaining to the hot-point drill, a total depth of ~244 m was successfully drilled at an average penetration rate of ~10 m h−1. After borehole drilling, ~12–15 h were generally required for the borehole to achieve thermal equilibrium with the surroundings. Preliminary results demonstrated that the 10 m snow–firn temperature along the traverse route was affected by the increasing altitude and latitude, and it decreased gradually with an increase in the distance from Zhongshan station.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"62 1","pages":"157 - 165"},"PeriodicalIF":2.5000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/aog.2020.87","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/aog.2020.87","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In glaciology, snow–firn temperature at 10 m is considered a representation of the mean annual air temperature at the surface (MAAT) of the studied site. Although MAAT is an important parameter in ice-sheet investigations, it has not been widely measured in Antarctica. To measure the 10 m snow–firn temperature in Antarctica, a shallow hot-point drill system is designed. In this simple and lightweight system, a hot-point drill can melt boreholes with a diameter of 34 mm in the snow–firn to a depth of 30 m and a temperature sensors string can measure the borehole temperature precisely. In the 2018/19 field season, 16 boreholes along the Zhongshan–Dome A traverse were drilled, and the borehole temperature was measured. Although certain problems existed pertaining to the hot-point drill, a total depth of ~244 m was successfully drilled at an average penetration rate of ~10 m h−1. After borehole drilling, ~12–15 h were generally required for the borehole to achieve thermal equilibrium with the surroundings. Preliminary results demonstrated that the 10 m snow–firn temperature along the traverse route was affected by the increasing altitude and latitude, and it decreased gradually with an increase in the distance from Zhongshan station.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
南极中山-穹顶A导线活动层温度测量浅层热点钻探系统
摘要在冰川学中,10米处的积雪温度被认为是研究地点地表年平均气温(MAAT)的代表。尽管MAAT是冰盖调查中的一个重要参数,但它在南极洲尚未得到广泛测量。为了测量南极洲10米的雪原温度,设计了一个浅层热点钻探系统。在这个简单轻便的系统中,热点钻机可以在雪中融化直径为34毫米的钻孔,深度为30米,温度传感器串可以精确测量钻孔温度。2018/19年野外季节,沿中山-穹顶A导线共钻探了16个钻孔,并测量了钻孔温度。尽管热点钻机存在某些问题,但以约10 m h−1的平均渗透率成功钻取了约244 m的总深度。钻孔后,钻孔通常需要约12–15小时才能与周围环境实现热平衡。初步结果表明,导线沿线10m雪原温度受海拔和纬度增加的影响,随着距离中山站距离的增加而逐渐降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Glaciology
Annals of Glaciology GEOGRAPHY, PHYSICAL-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
8.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annals of Glaciology publishes original scientific articles and letters in selected aspects of glaciology-the study of ice. Each issue of the Annals is thematic, focussing on a specific subject. The Council of the International Glaciological Society welcomes proposals for thematic issues from the glaciological community. Once a theme is approved, the Council appoints an Associate Chief Editor and a team of Scientific Editors to handle the submission, peer review and publication of papers.
期刊最新文献
Dye tracing of upward brine migration in snow MoT-PSA: a two-layer depth-averaged model for simulation of powder snow avalanches on 3-D terrain Resolution enhanced sea ice concentration: a new algorithm applied to AMSR2 microwave radiometry data Particle tracking in snow avalanches with in situ calibrated inertial measurement units Updating glacier inventories on the periphery of Antarctica and Greenland using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1