Toward a Multimodal Multitask Model for Neurodegenerative Diseases Diagnosis and Progression Prediction

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Pub Date : 2021-10-10 DOI:10.5220/0010600003220328
Sofia Lahrichi, M. Rhanoui, M. Mikram, B. E. Asri
{"title":"Toward a Multimodal Multitask Model for Neurodegenerative Diseases Diagnosis and Progression Prediction","authors":"Sofia Lahrichi, M. Rhanoui, M. Mikram, B. E. Asri","doi":"10.5220/0010600003220328","DOIUrl":null,"url":null,"abstract":"Recent studies on modelling the progression of Alzheimer's disease use a single modality for their predictions while ignoring the time dimension. However, the nature of patient data is heterogeneous and time dependent which requires models that value these factors in order to achieve a reliable diagnosis, as well as making it possible to track and detect changes in the progression of patients' condition at an early stage. This article overviews various categories of models used for Alzheimer's disease prediction with their respective learning methods, by establishing a comparative study of early prediction and detection Alzheimer's disease progression. Finally, a robust and precise detection model is proposed.","PeriodicalId":36824,"journal":{"name":"Data","volume":"1 1","pages":"322-328"},"PeriodicalIF":2.2000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.5220/0010600003220328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies on modelling the progression of Alzheimer's disease use a single modality for their predictions while ignoring the time dimension. However, the nature of patient data is heterogeneous and time dependent which requires models that value these factors in order to achieve a reliable diagnosis, as well as making it possible to track and detect changes in the progression of patients' condition at an early stage. This article overviews various categories of models used for Alzheimer's disease prediction with their respective learning methods, by establishing a comparative study of early prediction and detection Alzheimer's disease progression. Finally, a robust and precise detection model is proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经退行性疾病诊断与进展预测的多模态多任务模型
最近关于阿尔茨海默病进展建模的研究使用单一模式进行预测,而忽略了时间维度。然而,患者数据的性质是异质性和时间依赖性的,这需要重视这些因素的模型,以实现可靠的诊断,并使其能够在早期跟踪和检测患者病情进展的变化。本文通过建立早期预测和检测阿尔茨海默病进展的比较研究,概述了用于阿尔茨海默病预测的各种模型及其各自的学习方法。最后,提出了一种鲁棒且精确的检测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
期刊最新文献
Medical Opinions Analysis about the Decrease of Autopsies Using Emerging Pattern Mining Unlocking Insights: Analysing COVID-19 Lockdown Policies and Mobility Data in Victoria, Australia, through a Data-Driven Machine Learning Approach Expert-Annotated Dataset to Study Cyberbullying in Polish Language Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004 A Qualitative Dataset for Coffee Bio-Aggressors Detection Based on the Ancestral Knowledge of the Cauca Coffee Farmers in Colombia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1