Effect of dentin biomodification using natural collagen cross-linkers on the durability of the resin-dentin bond and demineralized dentin stiffness.

Ahmad Hassan El gindy, D. Sherief, Dalia I. El-Korashy
{"title":"Effect of dentin biomodification using natural collagen cross-linkers on the durability of the resin-dentin bond and demineralized dentin stiffness.","authors":"Ahmad Hassan El gindy, D. Sherief, Dalia I. El-Korashy","doi":"10.2139/ssrn.4226759","DOIUrl":null,"url":null,"abstract":"OBJECTIVE\nThe purpose of this study was to evaluate the effect of using natural cross-linkers as sumac and curcumin on the durability of the resin-dentin bond and stiffness of demineralized dentin matrix.\n\n\nMETHODS\nThirty sound molars were divided into 5 groups: Control (CO), Grape Seed extract (GSE), Cacao seed extract (CSE), Sumac extract (SE) and Curcumin extract (CE). The teeth had their coronal dentin exposed, etched, and pre-treated for 1 min with the extracts. Teeth were then bonded using Single-Bond II adhesive and 4 mm composite was built up on dentin surface. Teeth were sectioned into 1 × 1 × 8mm beams and their micro-tensile bond strength (μTBS) was tested after 24 h and 6 months of water storage. For stiffness testing, 15 teeth were sectioned to obtain dentin beams (1 × 1 × 6.5 mm), the beams were demineralized in 10% phosphoric acid then rinsed and divided into 5 groups. Beams were then immersed in their respective extract solution for 1 min after which they were subjected to a 3- point loading test using a universal testing machine to calculate their modulus of elasticity.\n\n\nRESULTS\nAfter 24 h, no significant difference in μTBS was shown between all groups. After 6 Months, GSE, CE, and SE showed significantly higher μTBS compared to CO (p ≥ 0.05). For the modulus of elasticity; only GSE showed a significantly higher modulus compared to other groups.\n\n\nCLINICAL RELEVANCE\nThe application of grape seed extract, curcumin and sumac extract as dentin pre-treatments appear to be a promising approach to enhance the durability of the resin-dentin bond in a clinically relevant application time.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105551"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4226759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

OBJECTIVE The purpose of this study was to evaluate the effect of using natural cross-linkers as sumac and curcumin on the durability of the resin-dentin bond and stiffness of demineralized dentin matrix. METHODS Thirty sound molars were divided into 5 groups: Control (CO), Grape Seed extract (GSE), Cacao seed extract (CSE), Sumac extract (SE) and Curcumin extract (CE). The teeth had their coronal dentin exposed, etched, and pre-treated for 1 min with the extracts. Teeth were then bonded using Single-Bond II adhesive and 4 mm composite was built up on dentin surface. Teeth were sectioned into 1 × 1 × 8mm beams and their micro-tensile bond strength (μTBS) was tested after 24 h and 6 months of water storage. For stiffness testing, 15 teeth were sectioned to obtain dentin beams (1 × 1 × 6.5 mm), the beams were demineralized in 10% phosphoric acid then rinsed and divided into 5 groups. Beams were then immersed in their respective extract solution for 1 min after which they were subjected to a 3- point loading test using a universal testing machine to calculate their modulus of elasticity. RESULTS After 24 h, no significant difference in μTBS was shown between all groups. After 6 Months, GSE, CE, and SE showed significantly higher μTBS compared to CO (p ≥ 0.05). For the modulus of elasticity; only GSE showed a significantly higher modulus compared to other groups. CLINICAL RELEVANCE The application of grape seed extract, curcumin and sumac extract as dentin pre-treatments appear to be a promising approach to enhance the durability of the resin-dentin bond in a clinically relevant application time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天然胶原交联剂生物修饰牙本质对树脂-牙本质结合耐久性和脱矿牙本质硬度的影响。
目的评价漆树和姜黄素等天然交联剂对树脂-牙本质结合耐久性和脱矿牙本质基质硬度的影响。方法将健康磨牙分为5组:对照组(CO)、葡萄籽提取物(GSE)、可可籽提取物(CSE)、漆树提取物(SE)和姜黄素提取物(CE)。牙齿的冠状牙本质暴露、蚀刻,并用提取物预处理1分钟。然后使用Single Bond II粘合剂粘合牙齿,并在牙本质表面构建4mm复合材料。将牙齿切成1×1×8mm的梁,并在蓄水24小时和6个月后测试其微拉伸结合强度(μTBS)。为了测试硬度,将15颗牙齿切片以获得牙本质梁(1×1×6.5mm),将梁在10%磷酸中软化,然后冲洗并分为5组。然后将梁浸入各自的提取溶液中1分钟,然后使用通用试验机对其进行3点加载试验,以计算其弹性模量。结果24小时后,各组间μTBS无显著性差异。6个月后,GSE、CE和SE的μTBS显著高于CO(p≥0.05);与其他组相比,只有GSE显示出显著更高的模量。临床相关性应用葡萄籽提取物、姜黄素和漆树提取物作为牙本质预处理似乎是在临床相关应用时间内提高树脂-牙本质结合耐久性的一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterisation and modelling of continuous electrospun poly(ɛ- caprolactone) filaments for biological tissue repair. TiNbSn alloy plates with low Young's modulus modulates interfragmentary movement and promote osteosynthesis in rat femur. Evaluation of flexural strength of additively manufactured resin materials compared to auto-polymerized provisional resin with and without hydrothermal aging. A Novel non-invasive optical framework for simultaneous analysis of contractility and calcium in single-cell cardiomyocytes. Influence of CAD/CAM diamond bur wear on the accuracy and surface roughness of dental ceramic restorations: A systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1