Mobile robot 3D trajectory estimation on a multilevel surface with multimodal fusion of 2D camera features and a 3D light detection and ranging point cloud

IF 2.3 4区 计算机科学 Q2 Computer Science International Journal of Advanced Robotic Systems Pub Date : 2022-03-01 DOI:10.1177/17298806221089198
V. Rosas-Cervantes, Quoc-Dong Hoang, S. Woo, Soon‐Geul Lee
{"title":"Mobile robot 3D trajectory estimation on a multilevel surface with multimodal fusion of 2D camera features and a 3D light detection and ranging point cloud","authors":"V. Rosas-Cervantes, Quoc-Dong Hoang, S. Woo, Soon‐Geul Lee","doi":"10.1177/17298806221089198","DOIUrl":null,"url":null,"abstract":"Nowadays, multi-sensor fusion is a popular tool for feature recognition and object detection. Integrating various sensors allows us to obtain reliable information about the environment. This article proposes a 3D robot trajectory estimation based on a multimodal fusion of 2D features extracted from color images and 3D features from 3D point clouds. First, a set of images was collected using a monocular camera, and we trained a Faster Region Convolutional Neural Network. Using the Faster Region Convolutional Neural Network, the robot detects 2D features from camera input and 3D features using the point’s normal distribution on the 3D point cloud. Then, by matching 2D image features to a 3D point cloud, the robot estimates its position. To validate our results, we compared the trained neural network with similar convolutional neural networks. Then, we evaluated their response for the mobile robot trajectory estimation.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221089198","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, multi-sensor fusion is a popular tool for feature recognition and object detection. Integrating various sensors allows us to obtain reliable information about the environment. This article proposes a 3D robot trajectory estimation based on a multimodal fusion of 2D features extracted from color images and 3D features from 3D point clouds. First, a set of images was collected using a monocular camera, and we trained a Faster Region Convolutional Neural Network. Using the Faster Region Convolutional Neural Network, the robot detects 2D features from camera input and 3D features using the point’s normal distribution on the 3D point cloud. Then, by matching 2D image features to a 3D point cloud, the robot estimates its position. To validate our results, we compared the trained neural network with similar convolutional neural networks. Then, we evaluated their response for the mobile robot trajectory estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动机器人在多层表面上的3D轨迹估计,具有2D相机特征和3D光检测和测距点云的多模式融合
目前,多传感器融合是一种流行的特征识别和目标检测工具。集成各种传感器使我们能够获得有关环境的可靠信息。本文提出了一种基于彩色图像中提取的二维特征和三维点云中的三维特征的多模式融合的三维机器人轨迹估计方法。首先,使用单眼相机收集一组图像,并训练一个更快的区域卷积神经网络。使用更快的区域卷积神经网络,机器人从相机输入中检测2D特征,并使用点在3D点云上的正态分布检测3D特征。然后,通过将2D图像特征与3D点云相匹配,机器人估计其位置。为了验证我们的结果,我们将训练的神经网络与类似的卷积神经网络进行了比较。然后,我们评估了它们对移动机器人轨迹估计的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
期刊最新文献
Expanded photo-model-based stereo vision pose estimation using a shooting distance unknown photo Enhanced lightweight deep network for efficient livestock detection in grazing areas Manipulate mechanism design and synchronous motion application for driving simulator A general method for the manipulability analysis of serial robot manipulators Design, simulation, and experiment for the end effector of a spherical fruit picking robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1