{"title":"Lie Symmetry Analysis and Explicit Solutions for the Time-Fractional Regularized Long-Wave Equation","authors":"N. Maarouf, Hicham Maadan, K. Hilal","doi":"10.1155/2021/6614231","DOIUrl":null,"url":null,"abstract":"This paper systematically investigates the Lie group analysis method of the time-fractional regularized long-wave (RLW) equation with Riemann–Liouville fractional derivative. The vector fields and similarity reductions of the time-fractional (RLW) equation are obtained. It is shown that the governing equation can be transformed into a fractional ordinary differential equation with a new independent variable, where the fractional derivatives are in Erdelyi–Kober sense. Furthermore, the explicit analytic solutions of the time-fractional (RLW) equation are obtained using the power series expansion method. Finally, some graphical features were presented to give a visual interpretation of the solutions.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":"1-11"},"PeriodicalIF":1.4000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6614231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9
Abstract
This paper systematically investigates the Lie group analysis method of the time-fractional regularized long-wave (RLW) equation with Riemann–Liouville fractional derivative. The vector fields and similarity reductions of the time-fractional (RLW) equation are obtained. It is shown that the governing equation can be transformed into a fractional ordinary differential equation with a new independent variable, where the fractional derivatives are in Erdelyi–Kober sense. Furthermore, the explicit analytic solutions of the time-fractional (RLW) equation are obtained using the power series expansion method. Finally, some graphical features were presented to give a visual interpretation of the solutions.