Asa Palakkaden Subramanian, A. Vidyadharan, Chithra Poomala Gopi
{"title":"Fabrication and Electrochemical Investigation of RGO-NiO Nanocomposite Electrodes for Supercapacitor Applications","authors":"Asa Palakkaden Subramanian, A. Vidyadharan, Chithra Poomala Gopi","doi":"10.13005/ojc/390411","DOIUrl":null,"url":null,"abstract":"The present investigation details the hydrothermal production of RGO-NiO nanocomposite and examines the electrochemical performance of the composite electrode functioning on an adaptable carbon cloth substrate. The RGO-NiO nanostructures display incredible super-capacitive functionality when used in a two-electrode system with a 2 M KOH-PVA electrolyte. This is due to the unique characteristics of RGO, which functions as a flexible and expandable platform for creating NiO nanocrystals with a nanoscopic spherical morphology. Large surface areas in these nanostructures facilitate ion diffusion, which ultimately raises specific capacitance. The nanocomposite electrode as-prepared displays a robust two-electrode structure, a constant potential window between (0V and 0.45V), and specific capacitances of up to 749F/g from CV at a rate of scan of 5mV/s and 366F/g from GCD at 1A/g. 5000 cycles of cyclic stability were examined, and the capacitance retention was 91.23% after successive cycles.","PeriodicalId":19599,"journal":{"name":"Oriental Journal Of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oriental Journal Of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/ojc/390411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present investigation details the hydrothermal production of RGO-NiO nanocomposite and examines the electrochemical performance of the composite electrode functioning on an adaptable carbon cloth substrate. The RGO-NiO nanostructures display incredible super-capacitive functionality when used in a two-electrode system with a 2 M KOH-PVA electrolyte. This is due to the unique characteristics of RGO, which functions as a flexible and expandable platform for creating NiO nanocrystals with a nanoscopic spherical morphology. Large surface areas in these nanostructures facilitate ion diffusion, which ultimately raises specific capacitance. The nanocomposite electrode as-prepared displays a robust two-electrode structure, a constant potential window between (0V and 0.45V), and specific capacitances of up to 749F/g from CV at a rate of scan of 5mV/s and 366F/g from GCD at 1A/g. 5000 cycles of cyclic stability were examined, and the capacitance retention was 91.23% after successive cycles.
期刊介绍:
Oriental Journal of Chemistry was started in 1985 with the aim to promote chemistry research. The journal consists of articles which are rigorously peer-reviewed. The journal was indexed in Emerging Science citation index in 2016. The Editorial board member consists of eminent international scientist in all fields of Chemistry. Details of each member and their contact information is mentioned in website. The journal has thorough ethics policies and uses plagiarism detection software(ithenticate) to screen each submission. The journal has recently partnered with publons as a part of making our reviews more transparent. The journal has recently incorporated PlumX for article level matrix. The journal is promoting research on all social and academic platforms mentioned in PlumX guidelines. The journal uses google maps to improve on the geographical distribution of Editorial board members as well as authors.