Synthesis of a Small Fingerprint Database through a Deep Generative Model for Indoor Localisation

IF 0.9 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Elektronika Ir Elektrotechnika Pub Date : 2023-02-27 DOI:10.5755/j02.eie.31905
Dwi Joko Suroso, P. Cherntanomwong, P. Sooraksa
{"title":"Synthesis of a Small Fingerprint Database through a Deep Generative Model for Indoor Localisation","authors":"Dwi Joko Suroso, P. Cherntanomwong, P. Sooraksa","doi":"10.5755/j02.eie.31905","DOIUrl":null,"url":null,"abstract":"In deep learning (DL), the deep generative model is helpful for data augmentation objectives to tackle the lack of datasets that have a significant impact on learning performance. Data augmentation or synthesis is expected to solve the issue in a small/sparse database. The problem of databasing also exists in the fingerprint-based indoor localisation system. The dense offline fingerprint database must be constructed with the accuracy requirement. However, this will affect the high cost, massive laborious work, and increase the complexity of the system. Therefore, this paper proposes to address these issues by generating synthetic data via a deep generative model. The generative adversarial network (GAN) is selected to generate the synthetic fingerprint database for indoor localisation. Our database consideration consists of power-based parameters, i.e., the received signal strength indicator (RSSI) from Wi-Fi devices obtained from the actual measurement campaign. Some of the literature mainly discusses how GAN works in a vast and complex dataset. Here, we consider applying GAN in a relatively small dataset and for a simple setup. Our results show that by only using the 20 % fraction of actual RSSI data combined with the synthetic RSSI, the accuracy validation performance is slightly higher than when using all actual data usage. Moreover, in only 60 % of actual data usage and in combination with 625 samples of synthetic data, the accuracy performance is improved to 0.73 (1.37 times higher than the use of all actual data, 0.53). Thus, this result proves that the challenges of offline fingerprint databases can be alleviated by data synthesis through GAN by using only a small dataset.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.31905","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In deep learning (DL), the deep generative model is helpful for data augmentation objectives to tackle the lack of datasets that have a significant impact on learning performance. Data augmentation or synthesis is expected to solve the issue in a small/sparse database. The problem of databasing also exists in the fingerprint-based indoor localisation system. The dense offline fingerprint database must be constructed with the accuracy requirement. However, this will affect the high cost, massive laborious work, and increase the complexity of the system. Therefore, this paper proposes to address these issues by generating synthetic data via a deep generative model. The generative adversarial network (GAN) is selected to generate the synthetic fingerprint database for indoor localisation. Our database consideration consists of power-based parameters, i.e., the received signal strength indicator (RSSI) from Wi-Fi devices obtained from the actual measurement campaign. Some of the literature mainly discusses how GAN works in a vast and complex dataset. Here, we consider applying GAN in a relatively small dataset and for a simple setup. Our results show that by only using the 20 % fraction of actual RSSI data combined with the synthetic RSSI, the accuracy validation performance is slightly higher than when using all actual data usage. Moreover, in only 60 % of actual data usage and in combination with 625 samples of synthetic data, the accuracy performance is improved to 0.73 (1.37 times higher than the use of all actual data, 0.53). Thus, this result proves that the challenges of offline fingerprint databases can be alleviated by data synthesis through GAN by using only a small dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度生成模型的小型指纹数据库室内定位合成
在深度学习(DL)中,深度生成模型有助于实现数据扩充目标,以解决缺乏对学习性能有重大影响的数据集的问题。数据扩充或合成有望解决小型/稀疏数据库中的问题。在基于指纹的室内定位系统中也存在数据库问题。密集离线指纹数据库的构建必须满足精度要求。然而,这将影响高成本、大量繁重的工作,并增加系统的复杂性。因此,本文建议通过深度生成模型生成合成数据来解决这些问题。选择生成对抗性网络(GAN)来生成用于室内定位的合成指纹数据库。我们的数据库考虑包括基于功率的参数,即从实际测量活动中获得的来自Wi-Fi设备的接收信号强度指示符(RSSI)。一些文献主要讨论了GAN如何在庞大而复杂的数据集中工作。在这里,我们考虑在相对较小的数据集中应用GAN,并进行简单的设置。我们的结果表明,仅使用实际RSSI数据的20%部分与合成RSSI相结合,精度验证性能略高于使用所有实际数据使用时的精度验证性能。此外,在只有60%的实际数据使用情况下,结合625个合成数据样本,准确率性能提高到0.73(比所有实际数据的使用率高1.37倍,0.53)。因此,这一结果证明,通过GAN只使用一个小数据集进行数据合成,可以缓解离线指纹数据库的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Elektronika Ir Elektrotechnika
Elektronika Ir Elektrotechnika 工程技术-工程:电子与电气
CiteScore
2.40
自引率
7.70%
发文量
44
审稿时长
24 months
期刊介绍: The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible. The journal publishes regular papers dealing with the following areas, but not limited to: Electronics; Electronic Measurements; Signal Technology; Microelectronics; High Frequency Technology, Microwaves. Electrical Engineering; Renewable Energy; Automation, Robotics; Telecommunications Engineering.
期刊最新文献
Optimum Design of an 18-Pulse Phase Shifting Autotransformer Rectifier to Improve the Power Quality of Cascaded H-Bridge Motor Driver Classification of Resampled Pediatric Epilepsy EEG Data Using Artificial Neural Networks with Discrete Fourier Transforms Time-Based High-Pass, Low-Pass, Shelf, and Notch Filters Deep Learning Method for Power Side-Channel Analysis on Chip Leakages Design of a High-Performance Control Scheme for a Grid-Connected DFIG‐Based Wind Energy Conversion System Using Model Predictive Control and Hysteresis Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1