Developed operation of inverter fed induction motor to drive the electric vehicle

IF 0.4 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY International Journal of Electric and Hybrid Vehicles Pub Date : 2020-03-02 DOI:10.1504/ijehv.2020.10027295
Basem E. Elnaghi, H. Ibrahim, Shereen Elsayed, Fathy Abd-Elkader
{"title":"Developed operation of inverter fed induction motor to drive the electric vehicle","authors":"Basem E. Elnaghi, H. Ibrahim, Shereen Elsayed, Fathy Abd-Elkader","doi":"10.1504/ijehv.2020.10027295","DOIUrl":null,"url":null,"abstract":"This paper focuses on increasing the operating efficiency of the inverter drive induction motor for electric vehicles. The vehicle speed control is achieved by changing the frequency from 5 Hz to 100 Hz. In this work, characteristics of the inverter control induction motor drive are established. The mathematical analysis is developed by the computer programs. The computed characteristic curves are obtained. Due to the difficulty of obtaining an actual electric vehicle in the lap, a fan load equivalent to the electric vehicle is used. The load characteristics are measured at different applied voltages for energy saving.","PeriodicalId":43639,"journal":{"name":"International Journal of Electric and Hybrid Vehicles","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electric and Hybrid Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijehv.2020.10027295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper focuses on increasing the operating efficiency of the inverter drive induction motor for electric vehicles. The vehicle speed control is achieved by changing the frequency from 5 Hz to 100 Hz. In this work, characteristics of the inverter control induction motor drive are established. The mathematical analysis is developed by the computer programs. The computed characteristic curves are obtained. Due to the difficulty of obtaining an actual electric vehicle in the lap, a fan load equivalent to the electric vehicle is used. The load characteristics are measured at different applied voltages for energy saving.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发了用于驱动电动汽车的逆变器供电感应电机的操作
本文的重点是提高电动汽车用逆变器驱动感应电动机的运行效率。车速控制是通过将频率从5Hz更改为100Hz来实现的。在这项工作中,建立了变频控制异步电动机驱动的特点。数学分析是由计算机程序开发的。得到了计算出的特性曲线。由于很难在圈内获得实际的电动汽车,因此使用了相当于电动汽车的风扇负载。为了节能,在不同的施加电压下测量负载特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Electric and Hybrid Vehicles
International Journal of Electric and Hybrid Vehicles TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
1.60
自引率
14.30%
发文量
27
期刊介绍: IJEHV provides a high quality, fully refereed international forum in the field of electric and hybrid automotive systems, including in-vehicle electricity production such as hydrogen fuel cells, to describe innovative solutions for the technical challenges enabling these new propulsion technologies.
期刊最新文献
Performance analysis of fuzzy logic-sliding mode controlled induction motor drive An exploration on electric vehicle purchase intention Modelling and analysis of electric two-wheeler with novel planetary gear box transmission Design of energy management strategy in fuel cell/battery/ultracapacitor hybrid vehicles based on a combined forward-backward algorithm and fuzzy control APPLICATION OF BLOCKCHAIN IN INTERNET OF VEHICLES TOWARDS IMPROVEMENT OF SMART TRANSPORTATION SYSTEMS - A CONVERGENCE SURVEY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1