Simultaneous inference for linear mixed model parameters with an application to small area estimation

IF 1.7 3区 数学 Q1 STATISTICS & PROBABILITY International Statistical Review Pub Date : 2022-09-18 DOI:10.1111/insr.12519
Katarzyna Reluga, María-José Lombardía, Stefan Sperlich
{"title":"Simultaneous inference for linear mixed model parameters with an application to small area estimation","authors":"Katarzyna Reluga,&nbsp;María-José Lombardía,&nbsp;Stefan Sperlich","doi":"10.1111/insr.12519","DOIUrl":null,"url":null,"abstract":"<p>Over the past decades, linear mixed models have attracted considerable attention in various fields of applied statistics. They are popular whenever clustered, hierarchical or longitudinal data are investigated. Nonetheless, statistical tools for valid simultaneous inference for mixed parameters are rare. This is surprising because one often faces inferential problems beyond the pointwise examination of fixed or mixed parameters. For example, there is an interest in a comparative analysis of cluster-level parameters or subject-specific estimates in studies with repeated measurements. We discuss methods for simultaneous inference assuming a linear mixed model. Specifically, we develop simultaneous prediction intervals as well as multiple testing procedures for mixed parameters. They are useful for joint considerations or comparisons of cluster-level parameters. We employ a consistent bootstrap approximation of the distribution of max-type statistic to construct our tools. The numerical performance of the developed methodology is studied in simulation experiments and illustrated in a data example on household incomes in small areas.</p>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"91 2","pages":"193-217"},"PeriodicalIF":1.7000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12519","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12519","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Over the past decades, linear mixed models have attracted considerable attention in various fields of applied statistics. They are popular whenever clustered, hierarchical or longitudinal data are investigated. Nonetheless, statistical tools for valid simultaneous inference for mixed parameters are rare. This is surprising because one often faces inferential problems beyond the pointwise examination of fixed or mixed parameters. For example, there is an interest in a comparative analysis of cluster-level parameters or subject-specific estimates in studies with repeated measurements. We discuss methods for simultaneous inference assuming a linear mixed model. Specifically, we develop simultaneous prediction intervals as well as multiple testing procedures for mixed parameters. They are useful for joint considerations or comparisons of cluster-level parameters. We employ a consistent bootstrap approximation of the distribution of max-type statistic to construct our tools. The numerical performance of the developed methodology is studied in simulation experiments and illustrated in a data example on household incomes in small areas.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性混合模型参数的同时推理及其在小区域估计中的应用
在过去的几十年里,线性混合模型在应用统计学的各个领域引起了相当大的关注。无论何时对集群、层次或纵向数据进行调查,它们都很受欢迎。尽管如此,用于混合参数的有效同时推断的统计工具很少。这是令人惊讶的,因为人们经常面临的推理问题超出了对固定或混合参数的逐点检查。例如,在重复测量的研究中,人们对集群级参数或受试者特定估计的比较分析感兴趣。我们讨论了假设线性混合模型的同时推理方法。具体来说,我们开发了同时预测区间以及混合参数的多个测试程序。它们对于集群级参数的联合考虑或比较非常有用。我们使用最大型统计量分布的一致自举近似来构建我们的工具。在模拟实验中研究了所开发方法的数值性能,并在小地区家庭收入的数据示例中进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Statistical Review
International Statistical Review 数学-统计学与概率论
CiteScore
4.30
自引率
5.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.
期刊最新文献
Issue Information Statistics: Multivariate Data Integration Using R; Methods and Applications With the mixOmics Package Kim-Anh Lê Cao, Zoe Marie WelhamChapman & Hall/CRC, 2021, xxi + 308 pages, £84.99/$115.00, hardcover ISBN: 978-1032128078 eBook ISBN: 9781003026860 Philosophies, Puzzles, and Paradoxes: A Statistician's Search for the Truth Yudi Pawitan and Youngjo LeeChapman & Hall/CRC, 2024, xiv + 351 pages, £18.39/$23.96 paperback, £104/$136 hardback, £17.24/$22.46 eBook ISBN: 9781032377391 paperback; 9781032377407 hardback; 9781003341659 ebook Machine Learning Theory and Applications: Hands-On Use Cases With Python on Classical and Quantum Machines, Xavier Vasques, John Wiley & Sons, 2024, xx + 487 pages, $89.95, hardcover ISBN: 978-1-394-22061-8 Object Oriented Data Analysis J. S. Marron and I. L. DrydenChapman & Hall/CRC, 2022, xii + 424 pages, softcover ISBN: 978-0-8153-9282-8 (hbk) ISBN: 978-1-032-11480-4 (pbk) ISBN: 978-1-351-18967-5 (ebk)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1