Development of in situ characterization of two-dimensional materials grown on insulator substrates with spectroscopic photoemission and low energy electron microscopy
Guanhua Zhang , Lina Liu , Shengxue Zhou , Yu Liang , Julong Sun , Lei Liu , Chuanyao Zhou , Liying Jiao , Xueming Yang , Zefeng Ren
{"title":"Development of in situ characterization of two-dimensional materials grown on insulator substrates with spectroscopic photoemission and low energy electron microscopy","authors":"Guanhua Zhang , Lina Liu , Shengxue Zhou , Yu Liang , Julong Sun , Lei Liu , Chuanyao Zhou , Liying Jiao , Xueming Yang , Zefeng Ren","doi":"10.1016/j.elspec.2023.147318","DOIUrl":null,"url":null,"abstract":"<div><p><span>Ultrathin two-dimensional (2D) materials offer great potential for next-generation integrated circuit and optoelectronic<span> devices. Chemical vapor deposition (CVD)-grown 2D materials provide a way to mass production in industry. However, how to </span></span><em>in situ</em> characterize their intrinsic electric/photoelectric properties and carrier dynamics with electron/photoelectron probes is still a problem due to the interference from the conducting substrate. Here, we present a grounding Au grids method to realize <em>in situ</em> characterization of the CVD-grown MoS<sub>2</sub> on the insulating thick SiO<sub>2</sub><span> layer covered Si substrate with spectroscopic photoemission<span> and low energy electron microscopy (SPELEEM). Through depositing Au grids afterwards, we have achieved good grounding of MoS</span></span><sub>2</sub><span><span> flakes in the photoemission electron microscopy (PEEM), mirror electron microscopy (MEM), and micro-area low energy electron diffraction (µ-LEED) measurements. We have clarified the false signal caused by stray photoelectrons originated from the Au stripes, and as well as the space charge effects induced by intense photoemission. We have also confirmed that time-resolved PEEM results are not affected by the stray signal, and by adopting a small light spot, both </span>static<span> and time-resolved micro-area photoelectron spectroscopy (µ-PES) can be unaffected by space charge effects. Our results provide a reliable way to </span></span><em>in situ</em> investigate 2D materials grown on insulating substrates by probing photoelectrons or backscattered electrons.</p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"264 ","pages":"Article 147318"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036820482300035X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrathin two-dimensional (2D) materials offer great potential for next-generation integrated circuit and optoelectronic devices. Chemical vapor deposition (CVD)-grown 2D materials provide a way to mass production in industry. However, how to in situ characterize their intrinsic electric/photoelectric properties and carrier dynamics with electron/photoelectron probes is still a problem due to the interference from the conducting substrate. Here, we present a grounding Au grids method to realize in situ characterization of the CVD-grown MoS2 on the insulating thick SiO2 layer covered Si substrate with spectroscopic photoemission and low energy electron microscopy (SPELEEM). Through depositing Au grids afterwards, we have achieved good grounding of MoS2 flakes in the photoemission electron microscopy (PEEM), mirror electron microscopy (MEM), and micro-area low energy electron diffraction (µ-LEED) measurements. We have clarified the false signal caused by stray photoelectrons originated from the Au stripes, and as well as the space charge effects induced by intense photoemission. We have also confirmed that time-resolved PEEM results are not affected by the stray signal, and by adopting a small light spot, both static and time-resolved micro-area photoelectron spectroscopy (µ-PES) can be unaffected by space charge effects. Our results provide a reliable way to in situ investigate 2D materials grown on insulating substrates by probing photoelectrons or backscattered electrons.
期刊介绍:
The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.