L. Castro, R. Alfonso, Carlos R. García, J. Rosales, D. S. Dominguez
{"title":"CFD analysis of thermal-hydraulic behaviour of the high performance light water reactor fuel assembly","authors":"L. Castro, R. Alfonso, Carlos R. García, J. Rosales, D. S. Dominguez","doi":"10.1504/IJNEST.2017.10009088","DOIUrl":null,"url":null,"abstract":"The High-Performance Light Water Reactor (HPLWR) is the European Supercritical Water-cooled Reactor design. In this paper, a thermal-hydraulic study of the HPLWR fuel assembly using CFD codes was carried out. The capability of the Reynolds Stress model of Speziale (SSG) and the k-ω Shear Stress Transport model (SST) for predicting the supercritical water heat transfer was evaluated. The axial temperature distributions of the fuel, cladding, coolant and moderator in the fuel assembly were obtained. Numerical results of the fuel temperature profiles were compared with that obtained by Waata (2006) and a good agreement was achieved. The cladding surface temperature profiles calculated with SSG and SST turbulence models are below the prescribed limits; however, hot spots in one sub-channel were found. The difference in the average thermal-hydraulic properties of the supercritical water calculated with SSG and SST was negligible. The fuel and cladding surface temperatures are higher when using the SST model.","PeriodicalId":35144,"journal":{"name":"International Journal of Nuclear Energy Science and Technology","volume":"11 1","pages":"229"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nuclear Energy Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNEST.2017.10009088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 5
Abstract
The High-Performance Light Water Reactor (HPLWR) is the European Supercritical Water-cooled Reactor design. In this paper, a thermal-hydraulic study of the HPLWR fuel assembly using CFD codes was carried out. The capability of the Reynolds Stress model of Speziale (SSG) and the k-ω Shear Stress Transport model (SST) for predicting the supercritical water heat transfer was evaluated. The axial temperature distributions of the fuel, cladding, coolant and moderator in the fuel assembly were obtained. Numerical results of the fuel temperature profiles were compared with that obtained by Waata (2006) and a good agreement was achieved. The cladding surface temperature profiles calculated with SSG and SST turbulence models are below the prescribed limits; however, hot spots in one sub-channel were found. The difference in the average thermal-hydraulic properties of the supercritical water calculated with SSG and SST was negligible. The fuel and cladding surface temperatures are higher when using the SST model.
期刊介绍:
Today, nuclear reactors generate nearly one quarter of the electricity in nations representing two thirds of humanity, and other nuclear applications are integral to many aspects of the world economy. Nuclear fission remains an important option for meeting energy requirements and maintaining a balanced worldwide energy policy; with major countries expanding nuclear energy"s role and new countries poised to introduce it, the key issue is not whether the use of nuclear technology will grow worldwide, even if public opinion concerning safety, the economics of nuclear power, and waste disposal issues adversely affect the general acceptance of nuclear power, but whether it will grow fast enough to make a decisive contribution to the global imperative of sustainable development.