CREDIT SCORING MENGGUNAKAN METODE LOCAL MEANS BASED K HARMONIC NEAREST NEIGHBOR (MLMKHNN)

T. Widiharih, M. Mukid
{"title":"CREDIT SCORING MENGGUNAKAN METODE LOCAL MEANS BASED K HARMONIC NEAREST NEIGHBOR (MLMKHNN)","authors":"T. Widiharih, M. Mukid","doi":"10.14710/MEDSTAT.11.2.107-117","DOIUrl":null,"url":null,"abstract":"Credit Scoring is designed so that lenders can easily make decisions regarding whether a loan proposal from a prospective customer is worthy of approval or not. This study examines the application of the Multi Local Means Based K Harmonic Nearest Neighbor (MLMKHNN) method in the case of motorcycle credit in a financial institution. The classification capability of this method in detecting potential borrowers into the credit category is either good or bad compared to its previous method, Local Means Based K Harmonic Nearest Neighbor (LMKNN). In this case the MLMKHNN method has not shown better performance than the LMKNN method. At the same level of total accuracy, MLMKHNN requires more numbers of neighbors than the number of neighbors required by the LMKNN method. Keywords : sampling design, all possible samples, statistical efficiency , cost efficienc y","PeriodicalId":34146,"journal":{"name":"Media Statistika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14710/MEDSTAT.11.2.107-117","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/MEDSTAT.11.2.107-117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Credit Scoring is designed so that lenders can easily make decisions regarding whether a loan proposal from a prospective customer is worthy of approval or not. This study examines the application of the Multi Local Means Based K Harmonic Nearest Neighbor (MLMKHNN) method in the case of motorcycle credit in a financial institution. The classification capability of this method in detecting potential borrowers into the credit category is either good or bad compared to its previous method, Local Means Based K Harmonic Nearest Neighbor (LMKNN). In this case the MLMKHNN method has not shown better performance than the LMKNN method. At the same level of total accuracy, MLMKHNN requires more numbers of neighbors than the number of neighbors required by the LMKNN method. Keywords : sampling design, all possible samples, statistical efficiency , cost efficienc y
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信用评分采用基于局部均值的K次谐波近邻(MLMKHNN)
信用评分旨在让贷款人能够轻松决定潜在客户的贷款提议是否值得批准。本研究考察了基于多局部均值的K谐波最近邻(MLMKHNN)方法在金融机构摩托车信贷案例中的应用。与之前的方法——基于局部均值的K谐波最近邻(LMKNN)相比,该方法在将潜在借款人检测到信贷类别中的分类能力是好的还是坏的。在这种情况下,MLMKHNN方法没有显示出比LMKNN方法更好的性能。在总精度相同的水平下,MLMKHNN需要比LMKNN方法所需的邻居数量更多的邻居数量。关键词:抽样设计,所有可能的样本,统计效率,成本效益
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
SIMULATION STUDY FOR UNDERSTANDING THE PERFORMANCE OF PARTIAL LEAST SQUARES–MODIFIED FUZZY CLUSTERING (PLSMFC) IN FINDING GROUPS UNDER STRUCTURAL EQUATION MODEL BETA-BINOMIAL MODEL IN SMALL AREA ESTIMATION USING HIERARCHICAL LIKELIHOOD APPROACH SURVIVAL ANALYSIS FOR RECURRENT EVENT DATA USING COUNTING PROCESS APPROACH: APPLICATION TO DIABETICS COMPARISON OF SPATIAL WEIGHTED MATRIX BETWEEN POWER AND QUEEN ON THE SPATIAL EMPIRICAL BEST LINEAR UNBIASED PREDICTION MODEL (Study on Per Capita Expenditure in East Java Province in 2019) MAX-STABLE PROCESS WITH GEOMETRIC GAUSSIAN MODEL ON RAINFALL DATA IN SEMARANG CITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1