{"title":"Scandium–copper–indides deriving from the ZrNiAl and MnCu2Al type structures","authors":"N. Gulay, Jutta Kösters, Y. Kalychak, R. Pöttgen","doi":"10.1515/zkri-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract Phase analytical studies in the Sc–Cu–In system led to samples of the solid solutions ScCu1–x–y In1+x and ScCu2–x In which were studied by X-ray powder diffraction. At room temperature the compounds ScCu1–x–y In1+x crystallize with the ZrNiAl type, space group P 6 ‾ $\\overline{6}$ 2m. Exemplarily, the structure of ScCu0.76In1.17 was refined from single crystal X-ray diffractometer data, revealing strong anisotropic displacements for the scandium atoms and a mixed occupied Cu/In site. Superstructure formation is observed at low temperatures. The ScCu0.78In1.14 and ScCu0.76In1.16 structures were refined from diffraction data recorded at 90 K. Both compounds adopt the HfRhSn type, space group P 6 ‾ $\\overline{6}$ 2c, a klassengleiche subgroup of index 2; doubling of the subcell c axis. The Cu/In filled trigonal Sc6 prisms are strongly distorted in the superstructure, resulting from pairwise dislocation of the Cu/In atoms from ideal positions within an equidistant chain to shorter (311.0 pm) and longer (392.8 pm) Cu/In–Cu/In distances. Single crystal data of the Heusler phases ScCu1.95In and ScCu1.94In show small degrees of copper vacancies.","PeriodicalId":48676,"journal":{"name":"Zeitschrift Fur Kristallographie-Crystalline Materials","volume":"237 1","pages":"61 - 68"},"PeriodicalIF":0.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Kristallographie-Crystalline Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/zkri-2022-0009","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Phase analytical studies in the Sc–Cu–In system led to samples of the solid solutions ScCu1–x–y In1+x and ScCu2–x In which were studied by X-ray powder diffraction. At room temperature the compounds ScCu1–x–y In1+x crystallize with the ZrNiAl type, space group P 6 ‾ $\overline{6}$ 2m. Exemplarily, the structure of ScCu0.76In1.17 was refined from single crystal X-ray diffractometer data, revealing strong anisotropic displacements for the scandium atoms and a mixed occupied Cu/In site. Superstructure formation is observed at low temperatures. The ScCu0.78In1.14 and ScCu0.76In1.16 structures were refined from diffraction data recorded at 90 K. Both compounds adopt the HfRhSn type, space group P 6 ‾ $\overline{6}$ 2c, a klassengleiche subgroup of index 2; doubling of the subcell c axis. The Cu/In filled trigonal Sc6 prisms are strongly distorted in the superstructure, resulting from pairwise dislocation of the Cu/In atoms from ideal positions within an equidistant chain to shorter (311.0 pm) and longer (392.8 pm) Cu/In–Cu/In distances. Single crystal data of the Heusler phases ScCu1.95In and ScCu1.94In show small degrees of copper vacancies.
期刊介绍:
Zeitschrift für Kristallographie – Crystalline Materials was founded in 1877 by Paul von Groth and is today one of the world’s oldest scientific journals. It offers a place for researchers to present results of their theoretical experimental crystallographic studies. The journal presents significant results on structures and on properties of organic/inorganic substances with crystalline character, periodically ordered, modulated or quasicrystalline on static and dynamic phenomena applying the various methods of diffraction, spectroscopy and microscopy.