{"title":"The Systematic Analysis of Exercise Mechanism in Human Diseases","authors":"Lei Pu, Peng Sun","doi":"10.1155/2022/8555020","DOIUrl":null,"url":null,"abstract":"Background As a part of a healthy lifestyle, exercise has been proven to be beneficial for the treatment of diseases and the prognosis of patients. Based on this, our research focuses on the impact of exercise on human health. Methods To study and analyze the samples in the GSE18966 gene expression profile, we first performed an analysis on the differential expressed genes (DEGs) through GEO2R, and then the DEGs enrichment in Gene Ontology functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways through the Database for Annotation, Visualization and Integrated Discovery database was conducted. Then, we delved into the gene set enrichment in KEGG through gene set enrichment analysis. After that, we achieved the construction of the protein-protein interaction (PPI) network of DEGs based on the Search Tool for the Retrieval of Interacting Genes online database, and the hub genes were screened and identified. Results We identified 433 upregulated DEGs and 186 downregulated DEGs from the samples before and after exercise in GSE18966. Through analysis, it was found that these DEGs-enriched pathways, such as the VEGF signaling pathway, the Wnt signaling pathway, and the insulin signaling pathway, were all involved in the regulation of various diseases. Then, GSEA analysis revealed that glycosaminoglycan biosynthesis chondroitin sulfate, type II diabetes mellitus, and basal cell carcinoma were related with exercise samples. The effects of these pathways on various diseases could be improved through exercise. Finally, 3 upregulated hub genes (VEGFA, POMC, and NRAS) and 3 downregulated hub genes (HRAS, NCOR1, and CAV1) were identified through the PPI network. Conclusions The bioinformatic analysis of samples before and after exercise provides key pathways and genes related to exercise to regulate various diseases, which confirms that exercise has an important influence on the treatment of many diseases.","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2022/8555020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1
Abstract
Background As a part of a healthy lifestyle, exercise has been proven to be beneficial for the treatment of diseases and the prognosis of patients. Based on this, our research focuses on the impact of exercise on human health. Methods To study and analyze the samples in the GSE18966 gene expression profile, we first performed an analysis on the differential expressed genes (DEGs) through GEO2R, and then the DEGs enrichment in Gene Ontology functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways through the Database for Annotation, Visualization and Integrated Discovery database was conducted. Then, we delved into the gene set enrichment in KEGG through gene set enrichment analysis. After that, we achieved the construction of the protein-protein interaction (PPI) network of DEGs based on the Search Tool for the Retrieval of Interacting Genes online database, and the hub genes were screened and identified. Results We identified 433 upregulated DEGs and 186 downregulated DEGs from the samples before and after exercise in GSE18966. Through analysis, it was found that these DEGs-enriched pathways, such as the VEGF signaling pathway, the Wnt signaling pathway, and the insulin signaling pathway, were all involved in the regulation of various diseases. Then, GSEA analysis revealed that glycosaminoglycan biosynthesis chondroitin sulfate, type II diabetes mellitus, and basal cell carcinoma were related with exercise samples. The effects of these pathways on various diseases could be improved through exercise. Finally, 3 upregulated hub genes (VEGFA, POMC, and NRAS) and 3 downregulated hub genes (HRAS, NCOR1, and CAV1) were identified through the PPI network. Conclusions The bioinformatic analysis of samples before and after exercise provides key pathways and genes related to exercise to regulate various diseases, which confirms that exercise has an important influence on the treatment of many diseases.
期刊介绍:
Genetics Research is a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic processes in health and disease. The journal focuses on the use of new technologies, such as next generation sequencing together with bioinformatics analysis, to produce increasingly detailed views of how genes function in tissues and how these genes perform, individually or collectively, in normal development and disease aetiology. The journal publishes original work, review articles, short papers, computational studies, and novel methods and techniques in research covering humans and well-established genetic organisms. Key subject areas include medical genetics, genomics, human evolutionary and population genetics, bioinformatics, genetics of complex traits, molecular and developmental genetics, Evo-Devo, quantitative and statistical genetics, behavioural genetics and environmental genetics. The breadth and quality of research make the journal an invaluable resource for medical geneticists, molecular biologists, bioinformaticians and researchers involved in genetic basis of diseases, evolutionary and developmental studies.