Jing Xiong , Chao Chen , Jiaming Cao , Junxiang Wang , Xingbo Liu
{"title":"Co-seismic deformation for the 2015 MW7.8 Gorkha earthquake (Nepal) using near-field GPS data","authors":"Jing Xiong , Chao Chen , Jiaming Cao , Junxiang Wang , Xingbo Liu","doi":"10.1016/j.geog.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Seasonal variations and common mode errors affect the precision of the Global Positioning System (GPS) time series. In this paper, we explore to improve the precision of coordinate time series, thereby providing a better detection of weak or transient deformation signals, particularly co-seismic signals. Based on 97 GPS stations, including the campaign and continuous GPS stations in Nepal and southern Tibet, we first consider seasonal variations and common errors, then obtain co-seismic deformation of the 2015 Gorkha earthquake in Nepal and southern Tibet. Our co-seismic rupture model is characterized by a shallow ramp and a deeper detachment fault, in agreement with the relocated aftershock sequence. Our results indicate that the earthquake rupture is mainly distributed in the upper-crustal fault, and the maximum slip is up to 8.0 m at ∼15.0 km depth located in the approximate-80 km east of the epicenter. The average slip is more than 5 m, and the total modelled magnitude is <em>M</em><sub>W</sub>7.84, consistent with the observed seismic moment. Our rupture model for the 2015 Gorkha earthquake suggests that the rupture zone is not only in the upper crustal Main Himalayan Thrust (MHT), but also spreads to the northern segment of the MHT.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"14 5","pages":"Pages 419-430"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984723000484","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Seasonal variations and common mode errors affect the precision of the Global Positioning System (GPS) time series. In this paper, we explore to improve the precision of coordinate time series, thereby providing a better detection of weak or transient deformation signals, particularly co-seismic signals. Based on 97 GPS stations, including the campaign and continuous GPS stations in Nepal and southern Tibet, we first consider seasonal variations and common errors, then obtain co-seismic deformation of the 2015 Gorkha earthquake in Nepal and southern Tibet. Our co-seismic rupture model is characterized by a shallow ramp and a deeper detachment fault, in agreement with the relocated aftershock sequence. Our results indicate that the earthquake rupture is mainly distributed in the upper-crustal fault, and the maximum slip is up to 8.0 m at ∼15.0 km depth located in the approximate-80 km east of the epicenter. The average slip is more than 5 m, and the total modelled magnitude is MW7.84, consistent with the observed seismic moment. Our rupture model for the 2015 Gorkha earthquake suggests that the rupture zone is not only in the upper crustal Main Himalayan Thrust (MHT), but also spreads to the northern segment of the MHT.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.