{"title":"Recent Advances in Arabic Automatic Text Summarization","authors":"Ahmad T. Al-Taani","doi":"10.15849/ijasca.211128.05","DOIUrl":null,"url":null,"abstract":"Recently, the volume of the Arabic texts and documents on the internet had increased rabidly and generated a rich and valuable content on the www. Several parties had contributed to this content, this includes researchers, companies, governmental agencies, educational institutions, etc. With this big content it became difficult to search and extract useful information using only mankind skills and search engines. This motivated researchers to propose automated methodologies to extract summaries or useful information from those documents. A lot of research has been proposed for the automatic extraction of summaries for the English language and other languages. Unfortunately, the research for the Arabic automatic text summarization is still humble and needs more attention. This study presents a critical review and analysis of recent studies in Arabic automatic text summarization. The review includes all recent studies used the different text summarization approaches which include statistical-based, graph-based, evolutionary-based, and machine learning-based approaches. The selection criteria of the literature are based on the venue of publication and year of publication; back to five years. All review papers in Arabic ATS are excluded from the review since the study considers the recent methodologies in Arabic ATS. As a conclusion of this research, we recommend researchers in Arabic text summarization to investigate the use of machine learning on abstractive approach for text summarization due to the lack of research in this area. Keywords: Automatic Text Summarization, The Arabic Language, Machine Learning, Natural Language Processing, Text Processing, Computational Linguistics.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.211128.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the volume of the Arabic texts and documents on the internet had increased rabidly and generated a rich and valuable content on the www. Several parties had contributed to this content, this includes researchers, companies, governmental agencies, educational institutions, etc. With this big content it became difficult to search and extract useful information using only mankind skills and search engines. This motivated researchers to propose automated methodologies to extract summaries or useful information from those documents. A lot of research has been proposed for the automatic extraction of summaries for the English language and other languages. Unfortunately, the research for the Arabic automatic text summarization is still humble and needs more attention. This study presents a critical review and analysis of recent studies in Arabic automatic text summarization. The review includes all recent studies used the different text summarization approaches which include statistical-based, graph-based, evolutionary-based, and machine learning-based approaches. The selection criteria of the literature are based on the venue of publication and year of publication; back to five years. All review papers in Arabic ATS are excluded from the review since the study considers the recent methodologies in Arabic ATS. As a conclusion of this research, we recommend researchers in Arabic text summarization to investigate the use of machine learning on abstractive approach for text summarization due to the lack of research in this area. Keywords: Automatic Text Summarization, The Arabic Language, Machine Learning, Natural Language Processing, Text Processing, Computational Linguistics.
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.