{"title":"Generative AI and the end of corpus-assisted data-driven learning? Not so fast!","authors":"Peter Crosthwaite , Vit Baisa","doi":"10.1016/j.acorp.2023.100066","DOIUrl":null,"url":null,"abstract":"<div><p>This article explores the potential advantages of corpora over generative artificial intelligence (GenAI) in understanding language patterns and usage, while also acknowledging the potential of GenAI to address some of the main shortcomings of corpus-based data-driven learning (DDL). One of the main advantages of corpora is that we know exactly the domain of texts from which the corpus data is derived, something that we cannot track from current large language models underlying applications like ChatGPT. We know the texts that make up large general corpora such as BNC2014 and BAWE, and can even extract full texts from these corpora if needed. Corpora also allow for more nuanced analysis of language patterns, including the statistics behind multi-word units and collocations, which can be difficult for GenAI to handle. However, it is important to note that GenAI has its own strengths in advancing our understanding of language-in-use that corpora, to date, have struggled with. We therefore argue that by combining corpus and GenAI approaches, language learners can gain a more comprehensive understanding of how language works in different contexts than is currently possible using only a single approach.</p></div>","PeriodicalId":72254,"journal":{"name":"Applied Corpus Linguistics","volume":"3 3","pages":"Article 100066"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Corpus Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666799123000266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This article explores the potential advantages of corpora over generative artificial intelligence (GenAI) in understanding language patterns and usage, while also acknowledging the potential of GenAI to address some of the main shortcomings of corpus-based data-driven learning (DDL). One of the main advantages of corpora is that we know exactly the domain of texts from which the corpus data is derived, something that we cannot track from current large language models underlying applications like ChatGPT. We know the texts that make up large general corpora such as BNC2014 and BAWE, and can even extract full texts from these corpora if needed. Corpora also allow for more nuanced analysis of language patterns, including the statistics behind multi-word units and collocations, which can be difficult for GenAI to handle. However, it is important to note that GenAI has its own strengths in advancing our understanding of language-in-use that corpora, to date, have struggled with. We therefore argue that by combining corpus and GenAI approaches, language learners can gain a more comprehensive understanding of how language works in different contexts than is currently possible using only a single approach.