Control of oscillations in two-rotor cyberphysical vibration units with time-varying observer

Q3 Physics and Astronomy Cybernetics and Physics Pub Date : 2020-12-30 DOI:10.35470/2226-4116-2020-9-4-206-213
O. Tomchina
{"title":"Control of oscillations in two-rotor cyberphysical vibration units with time-varying observer","authors":"O. Tomchina","doi":"10.35470/2226-4116-2020-9-4-206-213","DOIUrl":null,"url":null,"abstract":"In this paper the control of oscillations in the two-rotor vibration unit is studied. It is assumed that the velocity of the oscillation of the platform cannot be accurately measured. The time-varying observer is proposed to restore it. In order to guarantee stability of the frequency and amplitude of oscillations of the vibrating parts of a two-rotor vibration unit special control algorithms based on speed-gradient methodology. Simulation results confirm stability of the synchronous rotation modes of the unbalanced rotors of the vibration unit.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2020-9-4-206-213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper the control of oscillations in the two-rotor vibration unit is studied. It is assumed that the velocity of the oscillation of the platform cannot be accurately measured. The time-varying observer is proposed to restore it. In order to guarantee stability of the frequency and amplitude of oscillations of the vibrating parts of a two-rotor vibration unit special control algorithms based on speed-gradient methodology. Simulation results confirm stability of the synchronous rotation modes of the unbalanced rotors of the vibration unit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有时变观测器的双转子网络物理振动单元的振动控制
本文研究了双转子振动单元的振动控制问题。假设平台的振荡速度无法准确测量。为了保证双转子振动单元振动部件振动频率和振幅的稳定性,提出了基于速度梯度法的特殊控制算法。仿真结果证实了振动单元不平衡转子同步旋转方式的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybernetics and Physics
Cybernetics and Physics Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.
期刊最新文献
Enhancing functionality of two-rotor vibration machine by automatic control Adaptive exchange protocol for multi-agent communication in augmented reality system Feasibility study of permanent magnet dipoles for SILA facility Digital control of the synchronous modes of the two-rotor vibration set-up Suitability of different machine learning methods for high-speed flow modeling issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1