Heat pumps and thermal energy storages centralised management in a Renewable Energy Community.

M. Pasqui, G. Vaccaro, Pietro Lubello, A. Milazzo, C. Carcasci
{"title":"Heat pumps and thermal energy storages centralised management in a Renewable Energy Community.","authors":"M. Pasqui, G. Vaccaro, Pietro Lubello, A. Milazzo, C. Carcasci","doi":"10.54337/ijsepm.7625","DOIUrl":null,"url":null,"abstract":"This paper examines a Renewable Energy Community (REC) made up of 10 dwellings that collectively self-consume energy produced by a photovoltaic field connected to a water purifier. Each dwelling heat demand is satisfied by means of Heat Pump (HP) coupled with Thermal Energy Storage (TES), which can be managed to perform load shifting and increase collective-self-consumption (CSC). Techno-economic analyses are performed accounting for HPs' COP variation with temperature and part load operations, as well as TES heat dispersion. A new centralised control strategy for HPs is proposed and a sensitivity analysis is performed to assess the impact of varying TES system capacity. The results show that the centralised strategy can increase the CSC by 12-30%, with TES sizes of 100-1000 litres respectively. But the electricity consumption of HPs increases by 2-5% due to higher storage system temperatures causing worse average COPs by 2.3-0.6% and higher thermal losses by 29-58%. As a result, REC's energy independence rise, as does the amount of CSC incentives, but electricity bills also increase. Comparing these trends shows that CSC incentives should be adjusted according to energy prices to ensure cost-effective outcomes for all stakeholders and encourage the adoption of similar centralised control strategies.","PeriodicalId":37803,"journal":{"name":"International Journal of Sustainable Energy Planning and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy Planning and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54337/ijsepm.7625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

This paper examines a Renewable Energy Community (REC) made up of 10 dwellings that collectively self-consume energy produced by a photovoltaic field connected to a water purifier. Each dwelling heat demand is satisfied by means of Heat Pump (HP) coupled with Thermal Energy Storage (TES), which can be managed to perform load shifting and increase collective-self-consumption (CSC). Techno-economic analyses are performed accounting for HPs' COP variation with temperature and part load operations, as well as TES heat dispersion. A new centralised control strategy for HPs is proposed and a sensitivity analysis is performed to assess the impact of varying TES system capacity. The results show that the centralised strategy can increase the CSC by 12-30%, with TES sizes of 100-1000 litres respectively. But the electricity consumption of HPs increases by 2-5% due to higher storage system temperatures causing worse average COPs by 2.3-0.6% and higher thermal losses by 29-58%. As a result, REC's energy independence rise, as does the amount of CSC incentives, but electricity bills also increase. Comparing these trends shows that CSC incentives should be adjusted according to energy prices to ensure cost-effective outcomes for all stakeholders and encourage the adoption of similar centralised control strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热泵和热能储存在可再生能源社区进行集中管理。
本文研究了一个由10个住宅组成的可再生能源社区(REC),这些住宅共同消耗连接到净水器的光伏场产生的能源。通过热泵(HP)和储热系统(TES)来满足每个住宅的热需求,储热系统可以进行负荷转移和增加集体自耗(CSC)。进行了技术经济分析,考虑到HP的COP随温度和部分负荷运行的变化,以及TES的散热。提出了一种新的HP集中控制策略,并进行了灵敏度分析,以评估不同TES系统容量的影响。结果表明,集中策略可以将CSC提高12-30%,TES大小分别为100-1000升。但是,由于存储系统温度较高,导致平均COP降低2.3-0.6%,热损失增加29-58%,HP的耗电量增加了2-5%。因此,REC的能源独立性提高了,CSC的激励措施也增加了,但电费也增加了。比较这些趋势表明,CSC激励措施应根据能源价格进行调整,以确保所有利益相关者获得具有成本效益的结果,并鼓励采用类似的集中控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Sustainable Energy Planning and Management
International Journal of Sustainable Energy Planning and Management Social Sciences-Geography, Planning and Development
CiteScore
7.60
自引率
0.00%
发文量
18
审稿时长
30 weeks
期刊介绍: The journal is an international interdisciplinary journal in Sustainable Energy Planning and Management combining engineering and social science within Energy System Analysis, Feasibility Studies and Public Regulation. The journal especially welcomes papers within the following three focus areas: Energy System analysis including theories, methodologies, data handling and software tools as well as specific models and analyses at local, regional, country and/or global level. Economics, Socio economics and Feasibility studies including theories and methodologies of institutional economics as well as specific feasibility studies and analyses. Public Regulation and management including theories and methodologies as well as specific analyses and proposals in the light of the implementation and transition into sustainable energy systems.
期刊最新文献
Vision of Offshore Energy Hub at Faroe Islands: The Market Equilibrium Impact Ten years of sustainable energy planning and management Characteristics of household energy consumption in the shadow of the Russia-Ukraine war - a case study from Hungary PTX Project Implementation in Denmark: Takeaways and Insights Water use in a sustainable net zero energy system: what are the implications of employing bioenergy with carbon capture and storage?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1