Wood combustion nanoparticles emitted by conventional and advanced technology cordwood boilers, and their interactions in vitro with human lung epithelial monolayers
B. Panessa-Warren, T. Butcher, J. Warren, R. Trojanowski, K. Kisslinger, G. Wei, Y. Celebi
{"title":"Wood combustion nanoparticles emitted by conventional and advanced technology cordwood boilers, and their interactions in vitro with human lung epithelial monolayers","authors":"B. Panessa-Warren, T. Butcher, J. Warren, R. Trojanowski, K. Kisslinger, G. Wei, Y. Celebi","doi":"10.18331/brj2022.9.3.3","DOIUrl":null,"url":null,"abstract":"Biomass-burning boilers and stoves are widely used in many parts of the world, producing combustion emissions linked with health risks. Combustion emission nanoparticles (NPs) were collected from four representative wood burning boilers using oak cordwood at specific times in the burn cycle. The morphology and composition of the NPs was characterized using transmission electron microscopy and energy dispersive X-ray analysis. To determine the degree of NP cytotoxicity with human lung tissue, the combustion NPs were introduced to incubated lung bronchial epithelial monolayers (NCI-H292) in vitro at doses of 0.1 × 10-6 and 3.0 × 10-6 kg/L for 2 and 4 h. Histochemical analysis showed that cell death increased by a factor of 3.5 for both doses after 4 h when compared to the control. Ultrapure NPs prepared by wet chemical methods were also introduced to the epithelial lung cells for similar doses and exposure times and the cultures exhibited significantly reduced mortality. Electron microscopy was used to study the mechanism of cell mortality for the synthesized and combustion-based NPs by examining how the NP byproducts interacted with individual cell organelles. It was found that cell survival was strongly correlated with the absence of contaminants (salts, heavy metals, poly aromatic hydrocarbons) associated with the NPs entering the cells. Synthesized NPs consisting of pure carbon were relatively well tolerated and could be excreted without damaging the cell ultrastructure. Thus, careful removal of extraneous contaminants by controlling the burn cycle with a catalyst is essential to minimize the health and environmental effects of wood biofuel combustion. In better words, optimized advanced technology wood-burning boilers and stoves can provide a CO2-neutral energy source and significantly contribute to a future where fossil fuels have a reduced role.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/brj2022.9.3.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2
Abstract
Biomass-burning boilers and stoves are widely used in many parts of the world, producing combustion emissions linked with health risks. Combustion emission nanoparticles (NPs) were collected from four representative wood burning boilers using oak cordwood at specific times in the burn cycle. The morphology and composition of the NPs was characterized using transmission electron microscopy and energy dispersive X-ray analysis. To determine the degree of NP cytotoxicity with human lung tissue, the combustion NPs were introduced to incubated lung bronchial epithelial monolayers (NCI-H292) in vitro at doses of 0.1 × 10-6 and 3.0 × 10-6 kg/L for 2 and 4 h. Histochemical analysis showed that cell death increased by a factor of 3.5 for both doses after 4 h when compared to the control. Ultrapure NPs prepared by wet chemical methods were also introduced to the epithelial lung cells for similar doses and exposure times and the cultures exhibited significantly reduced mortality. Electron microscopy was used to study the mechanism of cell mortality for the synthesized and combustion-based NPs by examining how the NP byproducts interacted with individual cell organelles. It was found that cell survival was strongly correlated with the absence of contaminants (salts, heavy metals, poly aromatic hydrocarbons) associated with the NPs entering the cells. Synthesized NPs consisting of pure carbon were relatively well tolerated and could be excreted without damaging the cell ultrastructure. Thus, careful removal of extraneous contaminants by controlling the burn cycle with a catalyst is essential to minimize the health and environmental effects of wood biofuel combustion. In better words, optimized advanced technology wood-burning boilers and stoves can provide a CO2-neutral energy source and significantly contribute to a future where fossil fuels have a reduced role.
期刊介绍:
Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.