3D Printed Lenses for Vertical Beam Collimation of Optical Phased Arrays.

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING 3D Printing and Additive Manufacturing Pub Date : 2024-06-18 eCollection Date: 2024-06-01 DOI:10.1089/3dp.2022.0314
Sidra Tul Muntaha, Ari Hokkanen, Mikko Harjanne, Matteo Cherchi, Pekka Suopajärvi, Petri Karvinen, Markku Pekkarinen, Matthieu Roussey, Timo Aalto
{"title":"3D Printed Lenses for Vertical Beam Collimation of Optical Phased Arrays.","authors":"Sidra Tul Muntaha, Ari Hokkanen, Mikko Harjanne, Matteo Cherchi, Pekka Suopajärvi, Petri Karvinen, Markku Pekkarinen, Matthieu Roussey, Timo Aalto","doi":"10.1089/3dp.2022.0314","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents the design, fabrication, and characterization of edge-coupled 1D optical phased arrays (OPAs) combined with collimating lenses. Our concept was tested with two OPAs having different collimation ranges. Both OPA designs have 3-μm waveguide spacing and the maximum beam steering range is about 30° based on wavelength tuning around 1550 nm. The first generation had 37 channels with 108 μm of waveguide array width and the second generation had 512 channels with 1.5 mm array width. As the array outputs are edge coupled, suitable lenses are required to collimate the beam vertically. We report the comparison between a commercially available straight cylindrical lens and custom 3D printed curved cylindrical lenses. In the experiments, we demonstrate 1D beam steering of the light outcoupled from the waveguide facets and collimated by these lenses and analyzed parameters such as Rayleigh range and beam divergence. These parameters are estimated to be 9.9 mm and 7.0 mrad (0.4°), respectively, for the commercial lens, whereas 40.1 mm and 3.5 mrad (0.2°) for the dedicated 3D printed lens, showing a clear improvement.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0314","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the design, fabrication, and characterization of edge-coupled 1D optical phased arrays (OPAs) combined with collimating lenses. Our concept was tested with two OPAs having different collimation ranges. Both OPA designs have 3-μm waveguide spacing and the maximum beam steering range is about 30° based on wavelength tuning around 1550 nm. The first generation had 37 channels with 108 μm of waveguide array width and the second generation had 512 channels with 1.5 mm array width. As the array outputs are edge coupled, suitable lenses are required to collimate the beam vertically. We report the comparison between a commercially available straight cylindrical lens and custom 3D printed curved cylindrical lenses. In the experiments, we demonstrate 1D beam steering of the light outcoupled from the waveguide facets and collimated by these lenses and analyzed parameters such as Rayleigh range and beam divergence. These parameters are estimated to be 9.9 mm and 7.0 mrad (0.4°), respectively, for the commercial lens, whereas 40.1 mm and 3.5 mrad (0.2°) for the dedicated 3D printed lens, showing a clear improvement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于光学相控阵垂直光束准直的3D打印透镜
本文介绍了与准直透镜相结合的边缘耦合一维光学相控阵(OPA)的设计、制造和特性分析。我们用两个具有不同准直范围的 OPA 对这一概念进行了测试。两种 OPA 设计的波导间距均为 3μm,根据 1550 nm 左右的波长调整,最大光束转向范围约为 30°。第一代有 37 个通道,波导阵列宽度为 108 μm;第二代有 512 个通道,阵列宽度为 1.5 mm。由于阵列输出是边缘耦合的,因此需要合适的透镜来垂直准直光束。我们报告了商用直圆柱透镜和定制 3D 打印弧形圆柱透镜之间的比较。在实验中,我们演示了从波导面析出并经这些透镜准直的光的一维光束转向,并分析了瑞利范围和光束发散等参数。据估计,商用透镜的这些参数分别为 9.9 毫米和 7.0 mrad (0.4°),而专用 3D 打印透镜的这些参数分别为 40.1 毫米和 3.5 mrad (0.2°),显示出明显的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
期刊最新文献
Characterization of Chemically Treated Flexible Body-Centered Cubic Lattice Structures Fabricated by Fused Filament Fabrication Process. Coupled Computational Fluid Dynamics-Discrete Element Method Model for Investigation of Powder Effects in Nonconventional Laser Powder Bed Fusion Process. A Comprehensive Review on Manufacturing and Characterization of Polyetheretherketone Polymers for Dental Implant Applications. Fatigue and Corrosion Evaluation of L-PBF 316L Stainless Steel Having Undergone a Self-Terminating Etching Process for Surface Finish Improvement. A Review on Residual Stress in Metal Additive Manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1