O. Gvozdeva, A. Shalin, A. S. Stepushin, G. Zaynetdinova
{"title":"Formation of a unidirectional gradient structure in titanium alloy using reversible hydrogen alloying","authors":"O. Gvozdeva, A. Shalin, A. S. Stepushin, G. Zaynetdinova","doi":"10.17580/nfm.2021.01.05","DOIUrl":null,"url":null,"abstract":"The paper discusses the use of titanium alloys, for example, the VT6 alloy, for local armoring, which, with their minimum specific surface area, should provide high absorption of impact energy and a slow rate of crack propagation. It is shown that the achievement of such contradictory requirements is possible due to the creation of a directional gradient structure in the semi-finished product, which varies linearly from one side of the surface to the opposite. It is shown that the creation of such structures is possible due to the combined use of thermal and chemical-thermal treatments. The regularities of the formation of a unidirectional gradient structure in plates made of titanium alloy VT6 by means of thermal hydrogen treatment are investigated. It has been established that oxide and nitride coatings formed at isother-mal holdings for 4 hours and 30 minutes, respectively, work effectively as a barrier to hydrogen penetration. It has been found that the barrier oxide and nitride coatings most effectively perform the “protective” function when hydrogen is introduced up to 0.4%. It is shown that by varying the concentration of the introduced hydrogen, it is possible to change the depth of its diffusion penetration and, accordingly, the structure in the near-surface layers. It is shown that the finely dispersed structure formed on the surface of semi-finished products gives it increased strength characteristics, and the coarse-lamellar structure in the center of the samples provides good toughness and slows down the rate of crack propagation. It has been found that the barrier properties of the oxide coating during the thermal hydrogen treatment of large-sized items are slightly inferior to the same properties of the nitride coating. It is shown that the creation of a unidirectional gradient structure in plates made of VT6 alloy with a thickness of 12 mm provides them with good dynamic resistance when fired with 5.45 mm high penetration ammunition and 7.62 mm with a steel core bullet.","PeriodicalId":19653,"journal":{"name":"Nonferrous Metals","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonferrous Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17580/nfm.2021.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The paper discusses the use of titanium alloys, for example, the VT6 alloy, for local armoring, which, with their minimum specific surface area, should provide high absorption of impact energy and a slow rate of crack propagation. It is shown that the achievement of such contradictory requirements is possible due to the creation of a directional gradient structure in the semi-finished product, which varies linearly from one side of the surface to the opposite. It is shown that the creation of such structures is possible due to the combined use of thermal and chemical-thermal treatments. The regularities of the formation of a unidirectional gradient structure in plates made of titanium alloy VT6 by means of thermal hydrogen treatment are investigated. It has been established that oxide and nitride coatings formed at isother-mal holdings for 4 hours and 30 minutes, respectively, work effectively as a barrier to hydrogen penetration. It has been found that the barrier oxide and nitride coatings most effectively perform the “protective” function when hydrogen is introduced up to 0.4%. It is shown that by varying the concentration of the introduced hydrogen, it is possible to change the depth of its diffusion penetration and, accordingly, the structure in the near-surface layers. It is shown that the finely dispersed structure formed on the surface of semi-finished products gives it increased strength characteristics, and the coarse-lamellar structure in the center of the samples provides good toughness and slows down the rate of crack propagation. It has been found that the barrier properties of the oxide coating during the thermal hydrogen treatment of large-sized items are slightly inferior to the same properties of the nitride coating. It is shown that the creation of a unidirectional gradient structure in plates made of VT6 alloy with a thickness of 12 mm provides them with good dynamic resistance when fired with 5.45 mm high penetration ammunition and 7.62 mm with a steel core bullet.
期刊介绍:
Its thematic plan covers all directions of scientific and technical development in non-ferrous metallurgy. The main journal sections include scientific-technical papers on heavy and light non-ferrous metals, noble metals and alloys, rare and rare earth metals, carbon materials, composites and multi-functional coatings, radioactive elements, nanostructured metals and materials, metal forming, automation etc. Theoretical and practical problems of ore mining and mineral processing, production and processing of non-ferrous metals, complex usage of ores, economics and production management, automation of metallurgical processes are widely observed in this journal. "Non-ferrous Metals" journal publishes the papers of well-known scientists and leading metallurgists, elucidates important scientific-technical problems of development of concentrating and metallurgical enterprises, scientific-research institutes and universities in the field of non-ferrous metallurgy, presents new scientific directions and technical innovations in this area. The readers can find in this journal both the articles with applied investigations and with results of fundamental researches that make the base for new technical developments. Publishing according to the approach APC (Article processing charge).