{"title":"Impact of Solar Intensity on PV Generated Current Harmonics and Transformer Life: A Mathematical Model with Experimental Validation","authors":"S. K. Rajput, D. K. Dheer","doi":"10.1115/1.4055101","DOIUrl":null,"url":null,"abstract":"\n With the rising penetration of photovoltaic (PV) plants on low voltage distribution systems, the generation of current harmonics as well as its impact on transformer operation is a current concern. The present research work develops a mathematical relationship of solar intensity (I(t)) with PV-inverter generated total harmonic distortion of current (THDi,inv.), and then uses IEEE recommendations to present the impact of THDi,inv on the life of a three-phase distribution transformer (TPDT). The validation of the presented model is done by real-time data monitoring from a 100 kWp solar rooftop photovoltaic (SRTPV) system, integrated with an 11 kV grid supply through a 63 kVA TPDT in the composite environment of north India. According to the results, decreasing I(t) values from 857 W/m2 to 35 W/m2 raises THDi,inv from 3.57% to 63.43%. It is also observed that the production of poor THDi,inv is high in winter season (daily average = 27.44%) in comparison to their values in summer season (daily average = 15.21%). For I(t) values less than 315 W/m2, the generation of large THDi,inv (above 15%) take place and it increases the loss of life (LoL) of TPDT by a factor of 6.0.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055101","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2
Abstract
With the rising penetration of photovoltaic (PV) plants on low voltage distribution systems, the generation of current harmonics as well as its impact on transformer operation is a current concern. The present research work develops a mathematical relationship of solar intensity (I(t)) with PV-inverter generated total harmonic distortion of current (THDi,inv.), and then uses IEEE recommendations to present the impact of THDi,inv on the life of a three-phase distribution transformer (TPDT). The validation of the presented model is done by real-time data monitoring from a 100 kWp solar rooftop photovoltaic (SRTPV) system, integrated with an 11 kV grid supply through a 63 kVA TPDT in the composite environment of north India. According to the results, decreasing I(t) values from 857 W/m2 to 35 W/m2 raises THDi,inv from 3.57% to 63.43%. It is also observed that the production of poor THDi,inv is high in winter season (daily average = 27.44%) in comparison to their values in summer season (daily average = 15.21%). For I(t) values less than 315 W/m2, the generation of large THDi,inv (above 15%) take place and it increases the loss of life (LoL) of TPDT by a factor of 6.0.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.