Hossein Humayun Fard, S. Hosseini, M. Azarbayjani, M. Nikbakht
{"title":"Antiapoptotic Effects of Continuous Training and Selenium Consumption on the Liver Tissue of Cadmium-Exposed Rats","authors":"Hossein Humayun Fard, S. Hosseini, M. Azarbayjani, M. Nikbakht","doi":"10.5812/MEJRH.91278","DOIUrl":null,"url":null,"abstract":"Background: Cadmium has negative effects on various tissues of the body while selenium has antioxidant activities. Moreover, the benefits of exercise training for apoptotic factors including caspase-3 and cytochrome c, as well as cyclin D, have been regarded. Objectives: Therefore, the present study aimed to evaluate the anti-apoptotic effects of continuous training and selenium consumption on the liver tissue of cadmium-exposed rats. Methods: In this study, 25 rats were selected and randomly divided into five groups of five rats including: (1) control, (2) selenium consumption, (3) continuous training, (4) continuous training with selenium consumption, and (5) sham. For eight weeks, groups 1 to 4 received peritoneal cadmium (2 mg/kg) daily; groups 2 and 4 received peritoneal selenium (0.23 mg/kg) daily; and groups 3 and 4 performed continuous training three sessions per week. Caspase-3, cytochrome c, and cyclin D were measured at the protein level. Results: Cadmium consumption significantly increased the protein levels of caspase-3 and cytochrome c and decreased cyclin D in rats (P = 0.001). Selenium consumption and continuous training significantly decreased the protein levels of caspase-3 and cytochrome c and increased cyclin D in rats exposed to cadmium (P = 0.001). Continuous training along with selenium consumption had interactive effects on increasing the protein levels of cyclin D in rats exposed to cadmium (P = 0.02). Conclusions: It appears that continuous training and selenium consumption have interactive anti-apoptotic effects in the liver tissue of cadmium-exposed rats.","PeriodicalId":36354,"journal":{"name":"Middle East Journal of Rehabilitation and Health","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Middle East Journal of Rehabilitation and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/MEJRH.91278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Cadmium has negative effects on various tissues of the body while selenium has antioxidant activities. Moreover, the benefits of exercise training for apoptotic factors including caspase-3 and cytochrome c, as well as cyclin D, have been regarded. Objectives: Therefore, the present study aimed to evaluate the anti-apoptotic effects of continuous training and selenium consumption on the liver tissue of cadmium-exposed rats. Methods: In this study, 25 rats were selected and randomly divided into five groups of five rats including: (1) control, (2) selenium consumption, (3) continuous training, (4) continuous training with selenium consumption, and (5) sham. For eight weeks, groups 1 to 4 received peritoneal cadmium (2 mg/kg) daily; groups 2 and 4 received peritoneal selenium (0.23 mg/kg) daily; and groups 3 and 4 performed continuous training three sessions per week. Caspase-3, cytochrome c, and cyclin D were measured at the protein level. Results: Cadmium consumption significantly increased the protein levels of caspase-3 and cytochrome c and decreased cyclin D in rats (P = 0.001). Selenium consumption and continuous training significantly decreased the protein levels of caspase-3 and cytochrome c and increased cyclin D in rats exposed to cadmium (P = 0.001). Continuous training along with selenium consumption had interactive effects on increasing the protein levels of cyclin D in rats exposed to cadmium (P = 0.02). Conclusions: It appears that continuous training and selenium consumption have interactive anti-apoptotic effects in the liver tissue of cadmium-exposed rats.