Seismic Behavior and Dissipated Plastic Energy of Performance-Based-Designed High-Rise Concrete Structures with Considering Soil–Structure Interaction Effect

IF 1 Q4 ENGINEERING, CIVIL Civil Engineering Infrastructures Journal-CEIJ Pub Date : 2018-06-01 DOI:10.7508/CEIJ.2018.01.011
H. Mortezaie, Freydoon Rezaie
{"title":"Seismic Behavior and Dissipated Plastic Energy of Performance-Based-Designed High-Rise Concrete Structures with Considering Soil–Structure Interaction Effect","authors":"H. Mortezaie, Freydoon Rezaie","doi":"10.7508/CEIJ.2018.01.011","DOIUrl":null,"url":null,"abstract":"Since the structure and foundation are built on soil, the soil is the major platform by which seismic vibrations are transmitted to the structure, and has noticeable effects on the response and behavior of structure during earthquakes. In this research, the recently introduced Performance-based plastic design (PBPD) and its modified Performance-based plastic design (MPBPD) method in which soil and structure interaction effect has been considered underwent the seismic evaluation. In order to do evaluation, a twenty-floor concrete structure with MPBPD method and conventional PBPD was designed and analyzed in accordance with the time history of the 22 far-field quake records. In this study, cone model is employed for modeling the soil and foundation. With a detailed three-dimensional finite element model of a twenty-story high-rise structure constructed and exploited in the OpenSees software, it is attempted to consider a more realistic behavior of the structure. The results of six related parameters with the maximum response of the structure demonstrate the efficiency and performance of the MPBPD method for the purpose of considering the SSI effect, compared with the conventional method of PBPD. The Results show that, in the MPBPD design method, maximum displacement, acceleration, inter-story drift and shear force dropped leading to a better distribution of energy in the structure compared to the PBPD method.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/CEIJ.2018.01.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

Abstract

Since the structure and foundation are built on soil, the soil is the major platform by which seismic vibrations are transmitted to the structure, and has noticeable effects on the response and behavior of structure during earthquakes. In this research, the recently introduced Performance-based plastic design (PBPD) and its modified Performance-based plastic design (MPBPD) method in which soil and structure interaction effect has been considered underwent the seismic evaluation. In order to do evaluation, a twenty-floor concrete structure with MPBPD method and conventional PBPD was designed and analyzed in accordance with the time history of the 22 far-field quake records. In this study, cone model is employed for modeling the soil and foundation. With a detailed three-dimensional finite element model of a twenty-story high-rise structure constructed and exploited in the OpenSees software, it is attempted to consider a more realistic behavior of the structure. The results of six related parameters with the maximum response of the structure demonstrate the efficiency and performance of the MPBPD method for the purpose of considering the SSI effect, compared with the conventional method of PBPD. The Results show that, in the MPBPD design method, maximum displacement, acceleration, inter-story drift and shear force dropped leading to a better distribution of energy in the structure compared to the PBPD method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑土-结构相互作用的基于性能设计的高层混凝土结构的抗震性能和耗散塑性能
由于结构和基础都建在土壤上,土壤是地震振动传递到结构上的主要平台,对结构在地震中的响应和行为有着显著的影响。在本研究中,最近引入的基于性能的塑性设计(PBPD)及其改进的基于性能塑性设计方法(MPBPD)进行了地震评估,其中考虑了土壤和结构的相互作用效应。为了进行评估,根据22次远场地震记录的时程,采用MPBPD方法和常规PBPD方法设计并分析了一个20层混凝土结构。本研究采用圆锥模型对土壤和地基进行建模。通过在OpenSees软件中构建和开发的一个20层高层结构的详细三维有限元模型,试图考虑该结构更真实的行为。具有结构最大响应的六个相关参数的结果表明,与传统的PBPD方法相比,考虑SSI效应的MPBPD方法具有效率和性能。结果表明,在MPBPD设计方法中,与PBPD方法相比,最大位移、加速度、层间位移和剪力都有所下降,从而使结构中的能量分布更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
60.00%
发文量
0
审稿时长
47 weeks
期刊最新文献
The effect of hydrophobic amorphous carbon powder on the compressive strength, water absorption and rheological attributes of cement mortar Damage Detection in Double Layer Grids with Modal Strain Energy Method and Dempster-Shafer Theory Building Information Modeling Deployment in Oil, Gas and Petrochemical Industry: An Adoption Roadmap The Effects of Cold-Drawn Crimped-End Steel Fibers on the Mechanical and Durability of Concrete Overlay Numerical Investigation of Nailing Pattern Effect on Nailed Wall Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1