Generalizing Beyond the Test: Permutation-Based Profile Analysis for Explaining DIF Using Item Features

IF 1.9 3区 心理学 Q2 EDUCATION & EDUCATIONAL RESEARCH Journal of Educational and Behavioral Statistics Pub Date : 2023-06-12 DOI:10.3102/10769986231174927
M. Bolsinova, J. Tijmstra, Leslie Rutkowski, david. rutkowski
{"title":"Generalizing Beyond the Test: Permutation-Based Profile Analysis for Explaining DIF Using Item Features","authors":"M. Bolsinova, J. Tijmstra, Leslie Rutkowski, david. rutkowski","doi":"10.3102/10769986231174927","DOIUrl":null,"url":null,"abstract":"Profile analysis is one of the main tools for studying whether differential item functioning can be related to specific features of test items. While relevant, profile analysis in its current form has two restrictions that limit its usefulness in practice: It assumes that all test items have equal discrimination parameters, and it does not test whether conclusions about the item-feature effects generalize outside of the considered set of items. This article addresses both of these limitations, by generalizing profile analysis to work under the two-parameter logistic model and by proposing a permutation test that allows for generalizable conclusions about item-feature effects. The developed methods are evaluated in a simulation study and illustrated using Programme for International Student Assessment 2015 Science data.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231174927","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Profile analysis is one of the main tools for studying whether differential item functioning can be related to specific features of test items. While relevant, profile analysis in its current form has two restrictions that limit its usefulness in practice: It assumes that all test items have equal discrimination parameters, and it does not test whether conclusions about the item-feature effects generalize outside of the considered set of items. This article addresses both of these limitations, by generalizing profile analysis to work under the two-parameter logistic model and by proposing a permutation test that allows for generalizable conclusions about item-feature effects. The developed methods are evaluated in a simulation study and illustrated using Programme for International Student Assessment 2015 Science data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越测试的泛化:基于排列的概要分析用于使用项目特征解释DIF
简档分析是研究差异项目功能是否与测试项目的特定特征有关的主要工具之一。尽管相关,但目前形式的简档分析有两个限制,这限制了它在实践中的有用性:它假设所有测试项目都有相同的判别参数,并且它不测试关于项目特征效应的结论是否在所考虑的项目集之外泛化。本文通过将简档分析推广到双参数逻辑模型下,并提出一种排列检验,以得出关于项目特征效应的可推广结论,来解决这两个局限性。在模拟研究中对所开发的方法进行了评估,并使用2015年国际学生评估计划科学数据进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
4.20%
发文量
21
期刊介绍: Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.
期刊最新文献
Improving Balance in Educational Measurement: A Legacy of E. F. Lindquist A Simple Technique Assessing Ordinal and Disordinal Interaction Effects A Comparison of Latent Semantic Analysis and Latent Dirichlet Allocation in Educational Measurement Sample Size Calculation and Optimal Design for Multivariate Regression-Based Norming Corrigendum to Power Approximations for Overall Average Effects in Meta-Analysis With Dependent Effect Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1