Impact behavior of gravity cast AlSi10Mg alloy: Effect of hot isostatic pressing and innovative high pressure T6 heat treatment

IF 1.2 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Frattura ed Integrita Strutturale Pub Date : 2023-03-21 DOI:10.3221/igf-esis.64.13
L. Girelli, Maverick Giovagnoli, M. Tocci, A. Fortini, M. Gelfi, M. Merlin, A. Pola
{"title":"Impact behavior of gravity cast AlSi10Mg alloy: Effect of hot isostatic pressing and innovative high pressure T6 heat treatment","authors":"L. Girelli, Maverick Giovagnoli, M. Tocci, A. Fortini, M. Gelfi, M. Merlin, A. Pola","doi":"10.3221/igf-esis.64.13","DOIUrl":null,"url":null,"abstract":"In the present study the impact behavior of gravity casting AlSi10Mg alloy was evaluated with an instrumented Charpy pendulum. The effect of hot isostatic pressing, also followed by a T6 treatment, was analyzed in comparison with samples in the as-cast, annealed and T6 conditions. Furthermore, the effect of the innovative high-pressure T6 was investigated. It was found that the hot isostatic pressing is able to ensure densification of the alloy with an increase in both hardness and energy absorbed during impact. The T6 treatment performed at atmospheric pressure after the hot isostatic pressing is able to increase hardness and peak force. At the same time, the innovative high-pressure T6 is able to ensure similar results than those of hot isostatic pressing followed by T6, leading to a significant decrease in the treatment duration and costs and reducing the carbon footprint of the manufacturing process.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrita Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.64.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In the present study the impact behavior of gravity casting AlSi10Mg alloy was evaluated with an instrumented Charpy pendulum. The effect of hot isostatic pressing, also followed by a T6 treatment, was analyzed in comparison with samples in the as-cast, annealed and T6 conditions. Furthermore, the effect of the innovative high-pressure T6 was investigated. It was found that the hot isostatic pressing is able to ensure densification of the alloy with an increase in both hardness and energy absorbed during impact. The T6 treatment performed at atmospheric pressure after the hot isostatic pressing is able to increase hardness and peak force. At the same time, the innovative high-pressure T6 is able to ensure similar results than those of hot isostatic pressing followed by T6, leading to a significant decrease in the treatment duration and costs and reducing the carbon footprint of the manufacturing process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重力铸造AlSi10Mg合金的冲击行为:热等静压和创新高压T6热处理的影响
本研究采用仪器夏比摆锤对重力铸造AlSi10Mg合金的冲击行为进行了评价。与铸态、退火和T6条件下的样品进行比较,分析了热等静压以及随后的T6处理的影响。此外,还研究了创新高压T6的效果。研究发现,热等静压能够确保合金的致密化,同时提高硬度和冲击过程中吸收的能量。在热等静压之后在大气压下进行的T6处理能够增加硬度和峰值力。同时,创新的高压T6能够确保与T6之后的热等静压类似的结果,从而显著降低处理持续时间和成本,并减少制造过程的碳足迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frattura ed Integrita Strutturale
Frattura ed Integrita Strutturale Engineering-Mechanical Engineering
CiteScore
3.40
自引率
0.00%
发文量
114
审稿时长
6 weeks
期刊最新文献
Investigation on Microstructure, Hardness, Wear behavior and Fracture Surface Analysis of Strontium (Sr) and Calcium (Ca) Content A357 Modified Alloy by Statistical Technique Fatigue life investigation of notched TC4 specimens subjected to different patterns of laser shock peening High carbon steel/Inconel 718 bimetallic parts produced via Fused Filament Fabrication and Sintering Microstructure Characterization, Mechanical and Wear Behavior of Silicon Carbide and Neem Leaf Powder Reinforced AL7075 Alloy hybrid MMC’s. Mechanisms for Introduction of Pseudo Ductility in Fiber Reinforced Polymer Composites- A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1