Ultra-rapid determination of andrographolide and dehydroandrographolide in Andrographis Herba by solid phase extraction and liquid chromatography with mass spectrometry
Zhengming Qian, J. Chen, Qing-Qing Lei, Da Li, Guoying Tan, Juying Xie, Wenqing Li
{"title":"Ultra-rapid determination of andrographolide and dehydroandrographolide in Andrographis Herba by solid phase extraction and liquid chromatography with mass spectrometry","authors":"Zhengming Qian, J. Chen, Qing-Qing Lei, Da Li, Guoying Tan, Juying Xie, Wenqing Li","doi":"10.1556/1326.2023.01156","DOIUrl":null,"url":null,"abstract":"An ultra-rapid analytical method for determination of andrographolide and dehydroandrographolide in Andrographis Herba (AH) was developed by liquid chromatography with mass spectrometry (LC-MS). The sample was ultrasonically extracted with 10 mL 40% (v/v) methanol, and then purified with a C18 solid phase extraction column. The LC separation was performed on a Poroshell 120 EC-C18 column (30 × 2.1 mm, 2.7 μm) and eluted with 0.5 mmol L−1 ammonium acetate aqueous solution and acetonitrile (65:35) at a flow rate of 0.7 mL min−1, and detected by mass spectrometry (MS). The LC-MS analytical time was less than 1 min. The new developed method presented a good linearity (r > 0.9900), precision and repeatability (RSD < 2.0%). The recoveries for andrographolide and dehydroandrographolide were 93.5% (RSD = 2.2%) and 97.7% (RSD = 2.4%), respectively. The developed method was successfully applied in determination of andrographolide and dehydroandrographolide in seven batches of AH samples, and the contents of analytes in all samples were complied with the relative acceptance criteria in Chinese Pharmacopeia (>0.8%). This new developed LC-MS method is an ultra-rapid assay method for AH, which will help to improve the efficiency and reduce the cost of AH sample test.","PeriodicalId":7130,"journal":{"name":"Acta Chromatographica","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chromatographica","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1556/1326.2023.01156","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An ultra-rapid analytical method for determination of andrographolide and dehydroandrographolide in Andrographis Herba (AH) was developed by liquid chromatography with mass spectrometry (LC-MS). The sample was ultrasonically extracted with 10 mL 40% (v/v) methanol, and then purified with a C18 solid phase extraction column. The LC separation was performed on a Poroshell 120 EC-C18 column (30 × 2.1 mm, 2.7 μm) and eluted with 0.5 mmol L−1 ammonium acetate aqueous solution and acetonitrile (65:35) at a flow rate of 0.7 mL min−1, and detected by mass spectrometry (MS). The LC-MS analytical time was less than 1 min. The new developed method presented a good linearity (r > 0.9900), precision and repeatability (RSD < 2.0%). The recoveries for andrographolide and dehydroandrographolide were 93.5% (RSD = 2.2%) and 97.7% (RSD = 2.4%), respectively. The developed method was successfully applied in determination of andrographolide and dehydroandrographolide in seven batches of AH samples, and the contents of analytes in all samples were complied with the relative acceptance criteria in Chinese Pharmacopeia (>0.8%). This new developed LC-MS method is an ultra-rapid assay method for AH, which will help to improve the efficiency and reduce the cost of AH sample test.
期刊介绍:
Acta Chromatographica
Open Access
Acta Chromatographica publishes peer-reviewed scientific articles on every field of chromatography, including theory of chromatography; progress in synthesis and characterization of new stationary phases; chromatography of organic, inorganic and complex compounds; enantioseparation and chromatography of chiral compounds; applications of chromatography in biology, pharmacy, medicine, and food analysis; environmental applications of chromatography; analytical and physico-chemical aspects of sample preparation for chromatography; hyphenated and combined techniques; chemometrics and its applications in separation science.