Machine learning based modelling and optimization of post-combustion carbon capture process using MEA supporting carbon neutrality

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2023-09-01 DOI:10.1016/j.dche.2023.100115
Waqar Muhammad Ashraf, Vivek Dua
{"title":"Machine learning based modelling and optimization of post-combustion carbon capture process using MEA supporting carbon neutrality","authors":"Waqar Muhammad Ashraf,&nbsp;Vivek Dua","doi":"10.1016/j.dche.2023.100115","DOIUrl":null,"url":null,"abstract":"<div><p>The role of carbon capture technology using monoethanolamine (MEA) is critical for achieving the carbon-neutrality goal. However, maintaining the efficient operation of the post-combustion carbon capture is challenging considering the hyperdimensional design space and nonlinear characteristics of the process. In this work, CO<sub>2</sub> capture level from the flue gas in the absorption column is investigated for the post-combustion carbon capture process using MEA. Artificial neural network (ANN) and support vector machine (SVM) models are constructed to model CO<sub>2</sub> capture level under extensive hyperparameters tuning. The comparative performance analysis based on external validation test confirmed the superior modelling and generalization ability of ANN for the carbon capture process. Later, partial derivative-based sensitivity analysis is carried out and it is the found that absorbent-based input variables like lean solvent temperature and lean solvent flow rate are the two most significant input variables on CO<sub>2</sub> capture level in the absorption column. The optimization problem with the ANN model embedded in the nonlinear programming-based optimization environment is solved under different operating scenarios to determine the optimum operating ranges for the input variables corresponding to the maximum CO<sub>2</sub> capture level. This research presents the optimum operating conditions for CO<sub>2</sub> removal from the flue gas for the post-combustion carbon capture process using MEA that contributes to achieving the carbon neutrality goal.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"8 ","pages":"Article 100115"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508123000339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The role of carbon capture technology using monoethanolamine (MEA) is critical for achieving the carbon-neutrality goal. However, maintaining the efficient operation of the post-combustion carbon capture is challenging considering the hyperdimensional design space and nonlinear characteristics of the process. In this work, CO2 capture level from the flue gas in the absorption column is investigated for the post-combustion carbon capture process using MEA. Artificial neural network (ANN) and support vector machine (SVM) models are constructed to model CO2 capture level under extensive hyperparameters tuning. The comparative performance analysis based on external validation test confirmed the superior modelling and generalization ability of ANN for the carbon capture process. Later, partial derivative-based sensitivity analysis is carried out and it is the found that absorbent-based input variables like lean solvent temperature and lean solvent flow rate are the two most significant input variables on CO2 capture level in the absorption column. The optimization problem with the ANN model embedded in the nonlinear programming-based optimization environment is solved under different operating scenarios to determine the optimum operating ranges for the input variables corresponding to the maximum CO2 capture level. This research presents the optimum operating conditions for CO2 removal from the flue gas for the post-combustion carbon capture process using MEA that contributes to achieving the carbon neutrality goal.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用支持碳中和的MEA对燃烧后碳捕获过程进行基于机器学习的建模和优化
使用单乙醇胺(MEA)的碳捕集技术的作用对于实现碳中和目标至关重要。然而,考虑到该过程的超维设计空间和非线性特征,保持燃烧后碳捕获的有效运行是具有挑战性的。在这项工作中,利用MEA研究了燃烧后碳捕集过程中吸收塔烟气中的CO2捕集水平。建立了人工神经网络(ANN)和支持向量机(SVM)模型,对CO2捕获水平进行了广泛超参数整定。基于外部验证试验的性能对比分析证实了人工神经网络在碳捕集过程中具有优越的建模和泛化能力。随后,进行了基于偏导数的敏感性分析,发现基于吸收剂的输入变量如贫溶剂温度和贫溶剂流速是影响吸收塔CO2捕集水平的两个最显著的输入变量。将人工神经网络模型嵌入到基于非线性规划的优化环境中,求解不同运行场景下的优化问题,确定最大CO2捕集水平对应的输入变量的最佳运行范围。本研究提出了利用MEA从燃烧后碳捕集过程中烟气中去除二氧化碳的最佳操作条件,有助于实现碳中和目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
The trust region filter strategy: Survey of a rigorous approach for optimization with surrogate models Multi-agent distributed control of integrated process networks using an adaptive community detection approach Industrial data-driven machine learning soft sensing for optimal operation of etching tools Process integration technique for targeting carbon credit price subsidy Robust simulation and technical evaluation of large-scale gas oil hydrocracking process via extended water-energy-product (E-WEP) analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1