Yogita Patil, Sanjay Attarde, Rajesh Dhake, Umesh Fegade, Abdel-Nasser M. A. Alaghaz
{"title":"Adsorption of Congo red dye using metal oxide nano-adsorbents: Past, present, and future perspective","authors":"Yogita Patil, Sanjay Attarde, Rajesh Dhake, Umesh Fegade, Abdel-Nasser M. A. Alaghaz","doi":"10.1002/kin.21675","DOIUrl":null,"url":null,"abstract":"<p>The latest developments in the adsorption of organic dyes by adsorbents (metal oxides, modified metal oxides) were addressed in this review study. The main goal of this paper is to sort out the dispersion information of adsorbent materials, which are often employed in organic dye adsorption. The review dedicated to the specific dyes adsorption using various adsorbent (metal oxides, modified metal oxides). The review covers the adsorption process including parameters, kinetics, and isotherms. The review gives the brief information of Congo red (CR) adsorption using metal oxide nano-adsorbents which provide readers with massive dye specific collection. For the first time, several metal-doped materials that absorb organic dyes are summarized and addressed. The review includes adsorption of organic dyes using single metal oxide, bimetallic oxide, trimetallic oxide, and modified metal oxide. This study also summarized the effects of critical factors such as pH, initial dye concentration, adsorbent dosage, contact time, and temperature on dye adsorption utilizing metal oxide nano-adsorbents. In addition, the kinetic and applied isotherm models have been discussed. Finally, a few recommendations are made for further research on adsorbent materials.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21675","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
The latest developments in the adsorption of organic dyes by adsorbents (metal oxides, modified metal oxides) were addressed in this review study. The main goal of this paper is to sort out the dispersion information of adsorbent materials, which are often employed in organic dye adsorption. The review dedicated to the specific dyes adsorption using various adsorbent (metal oxides, modified metal oxides). The review covers the adsorption process including parameters, kinetics, and isotherms. The review gives the brief information of Congo red (CR) adsorption using metal oxide nano-adsorbents which provide readers with massive dye specific collection. For the first time, several metal-doped materials that absorb organic dyes are summarized and addressed. The review includes adsorption of organic dyes using single metal oxide, bimetallic oxide, trimetallic oxide, and modified metal oxide. This study also summarized the effects of critical factors such as pH, initial dye concentration, adsorbent dosage, contact time, and temperature on dye adsorption utilizing metal oxide nano-adsorbents. In addition, the kinetic and applied isotherm models have been discussed. Finally, a few recommendations are made for further research on adsorbent materials.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.