Robust Signal Recovery for High-Dimensional Linear Log-Contrast Models with Compositional Covariates

IF 2.9 2区 数学 Q1 ECONOMICS Journal of Business & Economic Statistics Pub Date : 2022-07-06 DOI:10.1080/07350015.2022.2097911
Dongxiao Han, Jian Huang, Yuanyuan Lin, Lei Liu, Lianqiang Qu, Liuquan Sun
{"title":"Robust Signal Recovery for High-Dimensional Linear Log-Contrast Models with Compositional Covariates","authors":"Dongxiao Han, Jian Huang, Yuanyuan Lin, Lei Liu, Lianqiang Qu, Liuquan Sun","doi":"10.1080/07350015.2022.2097911","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we propose a robust signal recovery method for high-dimensional linear log-contrast models, when the error distribution could be heavy-tailed and asymmetric. The proposed method is built on the Huber loss with penalization. We establish the and consistency for the resulting estimator. Under conditions analogous to the irrepresentability condition and the minimum signal strength condition, we prove that the signed support of the slope parameter vector can be recovered with high probability. The finite-sample behavior of the proposed method is evaluated through simulation studies, and applications to a GDP satisfaction dataset an HIV microbiome dataset are provided.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"41 1","pages":"957 - 967"},"PeriodicalIF":2.9000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2097911","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this article, we propose a robust signal recovery method for high-dimensional linear log-contrast models, when the error distribution could be heavy-tailed and asymmetric. The proposed method is built on the Huber loss with penalization. We establish the and consistency for the resulting estimator. Under conditions analogous to the irrepresentability condition and the minimum signal strength condition, we prove that the signed support of the slope parameter vector can be recovered with high probability. The finite-sample behavior of the proposed method is evaluated through simulation studies, and applications to a GDP satisfaction dataset an HIV microbiome dataset are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有组合协变量的高维线性对数对比度模型的鲁棒信号恢复
摘要在本文中,当误差分布可能是重尾和不对称时,我们为高维线性对数对比度模型提出了一种稳健的信号恢复方法。该方法建立在Huber损失的基础上,并进行了惩罚。我们建立了结果估计量的和一致性。在类似于不可表示性条件和最小信号强度条件的条件下,我们证明了斜率参数向量的符号支持可以高概率地恢复。通过模拟研究评估了所提出方法的有限样本行为,并将其应用于GDP满意度数据集和HIV微生物组数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
期刊最新文献
A Ridge-Regularized Jackknifed Anderson-Rubin Test. Efficient and Robust Estimation of the Generalized LATE Model Modeling and Forecasting Macroeconomic Downside Risk* Causal inference under outcome-based sampling with monotonicity assumptions Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1