Minimum power consumption of multistage irreversible Carnot heat pumps with heat transfer law of q ∝ (ΔT) m

IF 4.3 3区 工程技术 Q1 MECHANICS Journal of Non-Equilibrium Thermodynamics Pub Date : 2022-12-05 DOI:10.1515/jnet-2022-0068
Lingen Chen, Shaojun Xia
{"title":"Minimum power consumption of multistage irreversible Carnot heat pumps with heat transfer law of q ∝ (ΔT) m","authors":"Lingen Chen, Shaojun Xia","doi":"10.1515/jnet-2022-0068","DOIUrl":null,"url":null,"abstract":"Abstract For the given initial finite high-temperature heat reservoir temperature, continuous Hamilton–Jacobi–Bellman equations are established to obtain optimal finite high-temperature heat reservoir temperature for minimum power consumption of multistage Carnot heat pumping system with generalized convective heat transfer law [q ∝ (ΔT) m ]. Analytical expression of optimal heat reservoir temperature with Newtonian heat transfer law (m = 1) is obtained based on generalized optimization results for minimum power consumption. For other heat transfer laws (m ≠ 1), numerical solutions for minimum power consumption are provided. Optimization results for multistage Carnot heat pumps are compared with maximum power output solutions of multistage irreversible Carnot heat engines.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"48 1","pages":"107 - 118"},"PeriodicalIF":4.3000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract For the given initial finite high-temperature heat reservoir temperature, continuous Hamilton–Jacobi–Bellman equations are established to obtain optimal finite high-temperature heat reservoir temperature for minimum power consumption of multistage Carnot heat pumping system with generalized convective heat transfer law [q ∝ (ΔT) m ]. Analytical expression of optimal heat reservoir temperature with Newtonian heat transfer law (m = 1) is obtained based on generalized optimization results for minimum power consumption. For other heat transfer laws (m ≠ 1), numerical solutions for minimum power consumption are provided. Optimization results for multistage Carnot heat pumps are compared with maximum power output solutions of multistage irreversible Carnot heat engines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传热规律为q∞(ΔT)m的多级不可逆卡诺热泵的最小功耗
摘要对于给定的初始有限高温储热器温度,建立了连续的Hamilton–Jacobi–Bellman方程,以获得具有广义对流传热律[q∞(ΔT)m]的多级卡诺热泵系统在最小功耗下的最优有限高温储热器温度。基于最小功耗的广义优化结果,得到了具有牛顿传热定律(m=1)的最佳储热器温度的解析表达式。对于其他传热定律(m≠1),给出了最小功耗的数值解。将多级卡诺热泵的优化结果与多级不可逆卡诺热机的最大功率输出解进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
期刊最新文献
Is there a need for an extended phase definition for systems far from equilibrium? Numerical simulation of binary convection within the Soret regime in a tilted cylinder Entropy as Noether charge for quasistatic gradient flow Efficient ecological function optimization for endoreversible Carnot heat pumps Study on heat and mass transfer mechanism of unsaturated porous media under CW laser irradiation: with and without carrier gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1